Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(1): e0220222, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36541759

ABSTRACT

Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) of many Gram-negative bacteria, providing a barrier against the entry of toxic molecules. In Escherichia coli, LPS is exported to the cell surface by seven essential proteins (LptA-G) that form a transenvelope complex. At the inner membrane, the ATP-binding cassette (ABC) transporter LptB2FG associates with LptC to power LPS extraction from the membrane and transfer to the periplasmic LptA protein, which is in complex with the OM translocon LptDE. LptC interacts both with LptB2FG and LptADE to mediate the formation of the transenvelope bridge and regulates the ATPase activity of LptB2FG. A genetic screen has previously identified suppressor mutants at a residue (R212) of LptF that are viable in the absence of LptC. Here, we present in vivo evidence that the LptF R212G mutant assembles a six-protein transenvelope complex in which LptA mediates interactions with LptF and LptD in the absence of LptC. Furthermore, we present in vitro evidence that the mutant LptB2FG complexes restore the regulation of ATP hydrolysis as it occurs in the LptB2FGC complex to achieve wild-type efficient coupling of ATP hydrolysis and LPS movement. We also show the suppressor mutations restore the wild-type levels of LPS transport both in vivo and in vitro, but remarkably, without restoring the affinity of the inner membrane complex for LptA. Based on the sensitivity of lptF suppressor mutants to selected stress conditions relative to wild-type cells, we show that there are additional regulatory functions of LptF and LptC that had not been identified. IMPORTANCE The presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli, by seven essential proteins. LptC is the unconventional regulatory subunit of the LptB2FGC ABC transporter, involved in coordinating energy production and LPS transport. Surprisingly, despite being essential for bacterial growth, LptC can be deleted, provided that a specific residue in the periplasmic domain of LptF is mutated and LptA is overexpressed. Here, we apply biochemical techniques to investigate the suppression mechanism. The data produced in this work disclose an unknown regulatory function of LptF in the transporter that not only expands the knowledge about the Lpt complex but can also be targeted by novel LPS biogenesis inhibitors.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Lipopolysaccharides/metabolism , Suppression, Genetic , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Biological Transport/physiology , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Carrier Proteins/metabolism
2.
J Biol Chem ; 297(6): 101313, 2021 12.
Article in English | MEDLINE | ID: mdl-34673027

ABSTRACT

Lipopolysaccharide (LPS) is an essential glycolipid that covers the surface of gram-negative bacteria. The transport of LPS involves a dedicated seven-protein transporter system called the lipopolysaccharide transport system (Lpt) machinery that physically spans the entire cell envelope. The LptB2FG complex is an ABC transporter that hydrolyzes ATP to extract LPS from the inner membrane for transport to the outer membrane. Here, we extracted LptB2FG directly from the inner membrane with its original lipid environment using styrene-maleic acid polymers. We found that styrene-maleic acid polymers-LptB2FG in nanodiscs display not only ATPase activity but also a previously uncharacterized adenylate kinase (AK) activity, as it catalyzed phosphotransfer between two ADP molecules to generate ATP and AMP. The ATPase and AK activities of LptB2FG were both stimulated by the interaction on the periplasmic side with the periplasmic LPS transport proteins LptC and LptA and inhibited by the presence of the LptC transmembrane helix. We determined that the isolated ATPase module (LptB) had weak AK activity in the absence of transmembrane proteins LptF and LptG, and one mutation in LptB that weakens its affinity for ADP led to AK activity similar to that of fully assembled complex. Thus, we conclude that LptB2FG is capable of producing ATP from ADP, depending on the assembly of the Lpt bridge, and that this AK activity might be important to ensure efficient LPS transport in the fully assembled Lpt system.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenylate Kinase/metabolism , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Lipopolysaccharides/metabolism , Membrane Proteins/metabolism , Adenosine Triphosphate/metabolism , Biological Transport , Models, Molecular
3.
Front Mol Biosci ; 8: 758228, 2021.
Article in English | MEDLINE | ID: mdl-35004843

ABSTRACT

Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone-protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.

4.
Front Microbiol ; 11: 909, 2020.
Article in English | MEDLINE | ID: mdl-32477309

ABSTRACT

The outer membrane (OM) of Gram-negative bacteria is a highly selective permeability barrier due to its asymmetric structure with lipopolysaccharide (LPS) in the outer leaflet. In Escherichia coli, LPS is transported to the cell surface by the LPS transport (Lpt) system composed of seven essential proteins forming a transenvelope bridge. Transport is powered by the ABC transporter LptB2FGC, which extracts LPS from the inner membrane (IM) and transfers it, through LptC protein, to the periplasmic protein LptA. Then, LptA delivers LPS to the OM LptDE translocon for final assembly at the cell surface. The Lpt protein machinery operates as a single device, since depletion of any component leads to the accumulation of a modified LPS decorated with repeating units of colanic acid at the IM outer leaflet. Moreover, correct machine assembly is essential for LPS transit and disruption of the Lpt complex results in LptA degradation. Due to its vital role in cell physiology, the Lpt system represents a good target for antimicrobial drugs. Thanatin is a naturally occurring antimicrobial peptide reported to cause defects in membrane assembly and demonstrated in vitro to bind to the N-terminal ß-strand of LptA. Since this region is involved in both LptA dimerization and interaction with LptC, we wanted to elucidate the mechanism of inhibition of thanatin and discriminate whether its antibacterial effect is exerted by the disruption of the interaction of LptA with itself or with LptC. For this purpose, we here implemented the Bacterial Adenylate Cyclase Two-Hybrid (BACTH) system to probe in vivo the Lpt interactome in the periplasm. With this system, we found that thanatin targets both LptC-LptA and LptA-LptA interactions, with a greater inhibitory effect on the former. We confirmed in vitro the disruption of LptC-LptA interaction using two different biophysical techniques. Finally, we observed that in cells treated with thanatin, LptA undergoes degradation and LPS decorated with colanic acid accumulates. These data further support inhibition or disruption of Lpt complex assembly as the main killing mechanism of thanatin against Gram-negative bacteria.

6.
PLoS One ; 13(11): e0206692, 2018.
Article in English | MEDLINE | ID: mdl-30395652

ABSTRACT

As an integral membrane protein, purification and characterization of phospho-N- acetylmuramyl- pentapeptide translocase MraY have proven difficult. Low yield and concerns of retaining stability and activity after detergent solubilization have hampered the structure-function analysis. The recently developed detergent-free styrene-maleic acid (SMA) co-polymer system offers an alternative approach that may overcome these disadvantages. In this study, we used the detergent free system to purify MraY from Bacillus subtilis. This allowed efficient extraction of MraY that was heterologously produced in Escherichia coli membranes into SMA-wrapped nanodiscs. The purified MraY embedded in these nanodiscs (SMA-MraY) was comparable to the micellar MraY extracted with a conventional detergent (DDM) with regard to the yield and the purity of the recombinant protein but required significantly less time. The predominantly alpha-helical secondary structure of the protein in SMA-wrapped nanodiscs was also more stable against heat denaturation compared to the micellar protein. Thus, this detergent-free system is amenable to extract MraY efficiently and effectively while maintaining the biophysical properties of the protein. However, the apparent activity of the SMA-MraY was reduced compared to that of the detergent-solubilized protein. The present data indicates that this is caused by a lower accessibility of the enzyme in SMA-wrapped nanodiscs towards its polyisoprenoid substrate.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/isolation & purification , Transferases/isolation & purification , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biophysical Phenomena , Detergents , Enzyme Stability , Escherichia coli/genetics , Kinetics , Maleates , Micelles , Nanostructures , Polystyrenes , Protein Conformation, alpha-Helical , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Transferases/chemistry , Transferases/genetics , Transferases (Other Substituted Phosphate Groups)
SELECTION OF CITATIONS
SEARCH DETAIL
...