Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Braz J Biol ; 84: e279474, 2024.
Article in English | MEDLINE | ID: mdl-38747862

ABSTRACT

Variability in snake venom composition is well-documented and crucial for understanding snake ecology and predicting snakebites. In this study, we characterize the venom composition and biological activities of newborn female and male Bothrops moojeni and their mother. Our results reveal significant differences between the venom of newborn females and males, demonstrating a broad and diverse range of proteins. The venoms of newborn females showed higher serine protease effects, increased hemorrhagic activity, and greater lethality compared to the venom of newborn males. However, no differences were observed in phospholipase A2 and coagulant activity. The differences in protein composition and toxic activities between maternal and neonatal venom, as well as between the venoms of newborn females and males, contribute to understanding the diverse outcomes of snakebites. These results underscore the importance of considering sex and ontogeny in understanding venom composition in snakes.


Subject(s)
Animals, Newborn , Bothrops , Crotalid Venoms , Animals , Bothrops/classification , Bothrops/physiology , Female , Male , Sex Factors
3.
Toxicol Lett ; 333: 211-221, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32841740

ABSTRACT

Bothrops (lance-head pit vipers) venoms are rich in weaponised metalloprotease enzymes (SVMP). These toxic enzymes are structurally diverse and functionally versatile. Potent coagulotoxicity is particularly important for prey capture (via stroke-induction) and relevant to human clinical cases (due to consumption of clotting factors including the critical depletion of fibrinogen). In this study, three distinct isoforms of P-III class SVMPs (IC, IIB and IIC), isolated from Bothrops neuwiedi venom, were evaluated for their differential capacities to affect hemostasis of prey and human plasma. Furthermore, we tested the relative antivenom neutralisation of effects upon human plasma. The toxic enzymes displayed differential procoagulant potency between plasma types, and clinically relevant antivenom efficacy variations were observed. Of particular importance was the confirmation the antivenom performed better against prothrombin activating toxins than Factor X activating toxins, which is likely due to the greater prevalence of the former in the immunising venoms used for antivenom production. This is clinically relevant as the enzymes displayed differential potency in this regard, with one (IC) in particular being extremely potent in activating Factor X and thus was correspondingly poorly neutralised. This study broadens the current understanding about the adaptive role of the SVMPs, as well as highlights how the functional diversity of SVMP isoforms can influence clinical outcomes. Key Contribution: Our findings shed light upon the hemorrhagic and coagulotoxic effects of three SVMPs of the P-III class, as well as the coagulotoxic effects of SVMPs on human, avian and amphibian plasmas. Antivenom neutralised prothrombin-activating isoforms better than Factor X activating isoforms.


Subject(s)
Antivenins/pharmacology , Blood Coagulation/drug effects , Hemorrhage/prevention & control , Metalloproteases/toxicity , Snake Venoms/enzymology , Animals , Bothrops , Female , Hemorrhage/blood , Hemorrhage/chemically induced , Hemorrhage/physiopathology , Humans , Intravital Microscopy , Male , Metalloproteases/chemistry , Mice , Microcirculation/drug effects , Microvessels/diagnostic imaging , Microvessels/drug effects , Microvessels/pathology , Protein Isoforms
4.
Toxicon ; 108: 240-8, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26528579

ABSTRACT

Hemorrhage is one of the most striking effects of bites by viper snakes resulting in fast bleeding and ischemia in affected tissues. Snake venom metalloproteinases (SVMPs) are responsible for hemorrhagic activity, but the mechanisms involved in SVMP-induced hemorrhage are not entirely understood and the study of such mechanisms greatly depends on in vivo experiments. In vivo, hemorrhagic SVMPs accumulate on basement membrane (BM) of venules and capillary vessels allowing the hydrolysis of collagen IV with consequent weakness and rupture of capillary walls. These effects are not reproducible in vitro with conventional endothelial cell cultures. In this study we used two-dimension (2D) or three-dimension (3D) cultures of HUVECs on matrigel and observed the same characteristics as in ex vivo experiments: only the hemorrhagic toxin was able to localize on surfaces or internalize endothelial cells in 2D cultures or in the surface of tubules formed on 3D cultures. The contribution of matrigel, fibronectin and collagen matrices in jararhagin-induced endothelial cell damage was then analyzed. Collagen and matrigel substrates enhanced the endothelial cell damage induced by jararhagin allowing toxin binding to focal adhesions, disruption of stress fibers, detachment and apoptosis. The higher affinity of jararhagin to collagen than to fibronectin explains the localization of the toxin within BM. Moreover, once located in BM, interactions of jararhagin with α2ß1 integrin would favor its localization on focal adhesions, as observed in our study. The accumulation of toxin in focal adhesions, observed only in cells grown in collagen matrices, would explain the enhancement of cell damage in these matrices and reflects the actual interaction among toxin, endothelial cells and BM components that occurs in vivo and results in the hemorrhagic lesions induced by viper venoms.


Subject(s)
Collagen/drug effects , Crotalid Venoms/pharmacology , Fibronectins/drug effects , Metalloendopeptidases/pharmacology , Apoptosis/drug effects , Basement Membrane/drug effects , Cell Culture Techniques , Cell-Matrix Junctions/drug effects , Crotalid Venoms/analysis , DNA Fragmentation/drug effects , Drug Combinations , Endothelial Cells/drug effects , Flow Cytometry , Focal Adhesions/drug effects , Human Umbilical Vein Endothelial Cells , Laminin , Metalloendopeptidases/analysis , Models, Biological , Proteoglycans , Bothrops jararaca Venom
5.
Toxicon ; 104: 57-64, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26272708

ABSTRACT

Disintegrins are cysteine-rich toxins containing the RGD motif exposed in a loop that binds integrins such as αIIbß3, α5ß1 and αvß3. The flexibility of the RGD loop, controlled by the profile of the cysteine pairs and the residues flanking the RGD sequence, are key structural features for the functional activity of these molecules. Recently, our group reported a transcript in the venom gland of Bothrops neuwiedi corresponding to a new P-II SVMP precursor, BnMPIIx, in which the RGD-binding loop includes many substituted residues and unique cysteine residues at the C-terminal. In this paper, we obtained the recombinant disintegrin domain of BnMPIIx, Neuwiedin, which inhibited ADP-induced platelet aggregation, endothelial cell adhesion to fibrinogen and tube formation in Matrigel with no particular selectivity to αIIbß3 or endothelial cell integrins. This value was also comparable to the inhibition observed with other recombinant disintegrins with conserved cysteine positions and residues in RGD loop. In this regard, Neuwiedin is an important component to understand the functional relevance of the diversity generated by accelerated evolution of venom toxins as well as to find out eventual new disintegrin-dependent targets that may be approached with disintegrins.


Subject(s)
Bothrops , Crotalid Venoms/chemistry , Cysteine/chemistry , Disintegrins/chemistry , Salivary Glands/metabolism , Amino Acid Sequence , Animals , Cell Adhesion/drug effects , Cloning, Molecular , Endothelial Cells/drug effects , Escherichia coli/genetics , Molecular Sequence Data , Platelet Aggregation/drug effects , Recombinant Proteins/chemistry , Sequence Alignment , Sequence Analysis, DNA
6.
Biochimie ; 118: 60-70, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26276061

ABSTRACT

Comparisons between venoms from snakes kept under captivity or collected at the natural environment are of fundamental importance in order to obtain effective antivenoms to treat human victims of snakebites. In this study, we compared composition and biological activities of Bothrops atrox venom from snakes collected at Tapajós National Forest (Pará State, Brazil) or maintained for more than 10 years under captivity at Instituto Butantan herpetarium after have been collected mostly at Maranhão State, Brazil. Venoms from captive or wild snakes were similar except for small quantitative differences detected in peaks correspondent to phospholipases A2 (PLA2), snake venom metalloproteinases (SVMP) class PI and serine proteinases (SVSP), which did not correlate with fibrinolytic and coagulant activities (induced by PI-SVMPs and SVSPs). In both pools, the major toxic component corresponded to PIII-SVMPs, which were isolated and characterized. The characterization by mass spectrometry of both samples identified peptides that matched with a single PIII-SVMP cDNA characterized by transcriptomics, named Batroxrhagin. Sequence alignments show a strong similarity between Batroxrhagin and Jararhagin (96%). Batroxrhagin samples isolated from venoms of wild or captive snakes were not pro-coagulant, but inhibited collagen-induced platelet-aggregation, and induced hemorrhage and fibrin lysis with similar doses. Results suggest that in spite of environmental differences, venom variability was detected only among the less abundant components. In opposition, the most abundant toxin, which is a PIII-SVMP related to the key effects of the venom, is structurally conserved in the venoms. This observation is relevant for explaining the efficacy of antivenoms produced with venoms from captive snakes in human accidents inflicted at distinct natural environments.


Subject(s)
Bothrops/physiology , Crotalid Venoms/chemistry , Metalloproteases/chemistry , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Crotalid Venoms/metabolism , Female , Male , Metalloproteases/metabolism , Molecular Sequence Data , RNA, Messenger/analysis , Tandem Mass Spectrometry
7.
Toxicon ; 87: 81-91, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24887282

ABSTRACT

BaP1 is a P-I class snake venom metalloproteinase (SVMP) relevant in the local tissue damage associated with envenomings by Bothrops asper, a medically important snake species in Central America and parts of South and North America. The main treatment for these accidents is the passive immunotherapy using antibodies raised in horses. In order to obtain more specific and batch-to-batch consistent antivenons, recombinant antibodies are considered a good option compared to animal immunization. We constructed a recombinant single chain variable fragment (scFv) from a monoclonal antibody against BaP1 (MABaP1) formerly secreted by a hybridoma clone. This recombinant antibody was cloned into pMST3 vector in fusion with SUMO protein and contains VH and VL domains linked by a flexible (G4S)3 polypeptide (scFvBaP1). The aim of this work was to produce scFvBaP1 and to evaluate its potential concerning the neutralization of biologically important activities of BaP1. The cytoplasmic expression of this construct was successfully achieved in C43 (DE3) bacteria. Our results showed that scFvBaP1-SUMO fusion protein presented an electrophoretic band of around 43 kDa from which SUMO alone corresponded to 13.6 kDa, and only the scFv was able to recognize BaP1 as well as the whole venom by ELISA. In contrast, neither an irrelevant scFv anti-LDL nor its MoAb partner recognized it. BaP1-induced fibrinolysis was significantly neutralized by scFvBaP1, but not by SUMO, in a concentration-dependent manner. In addition, scFvBaP1, as well as MaBaP1, completely neutralized in vivo hemorrhage, muscle necrosis, and inflammation induced by the toxin. Docking analyses revealed possible modes of interaction of the recombinant antibody with BaP1. Our data showed that scFv recognized BaP1 and whole B. asper venom, and neutralized biological effects of this SVMP. This scFv antibody can be used for understanding the molecular mechanisms of neutralization of SVMPs, and for exploring the potential of recombinant antibody fragments for improving the neutralization of local tissue damage in snakebite envenoming.


Subject(s)
Antivenins/pharmacology , Bothrops/metabolism , Hemorrhage/chemically induced , Metalloproteases/antagonists & inhibitors , Metalloproteases/toxicity , Snake Venoms/antagonists & inhibitors , Tumor Suppressor Proteins/antagonists & inhibitors , Ubiquitin Thiolesterase/antagonists & inhibitors , Amino Acid Sequence , Animals , Antibody Specificity , Antivenins/chemistry , Escherichia coli/metabolism , Female , Immunoglobulin Fragments/pharmacology , Inflammation/chemically induced , Inflammation/prevention & control , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Neutralization Tests , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/immunology , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/immunology
8.
Toxicon ; 56(6): 1059-65, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20674587

ABSTRACT

BaP1 is a P-I class of Snake Venom Metalloproteinase (SVMP) relevant in the local tissue damage associated with envenomations by Bothrops asper, a medically-important species in Central America and parts of South America. Six monoclonal antibodies (MoAb) against BaP1 (MABaP1) were produced and characterized regarding their isotype, dissociation constant (K(d)), specificity and ability to neutralize BaP1-induced hemorrhagic and proteolytic activity. Two MABaP1 are IgM, three are IgG1 and one is IgG2b. The K(d)s of IgG MoAbs were in the nM range. All IgG MoAbs recognized conformational epitopes of BaP1 and B. asper venom components but failed to recognize venoms from 27 species of Viperidae, Colubridae and Elapidae families. Clone 7 cross-reacted with three P-I SVMPs tested (moojeni protease, insularinase and neuwiedase). BaP1-induced hemorrhage was totally neutralized by clones 3, 6 and 8 but not by clone 7. Inhibition of BaP1 enzymatic activity on a synthetic substrate by MABaP1 was totally achieved by clones 3 and 6, and partially by clone 8, but not by clone 7. In conclusion, these neutralizing MoAbs against BaP1 may become important tools to understand structure-function relationships of BaP1 and the role of P-I class SVMP in snakebite envenomation.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Bothrops/physiology , Crotalid Venoms/enzymology , Metalloendopeptidases/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Cross Reactions , Crotalid Venoms/antagonists & inhibitors , Crotalid Venoms/toxicity , Edema/chemically induced , Edema/prevention & control , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Hemorrhage/chemically induced , Hemorrhage/prevention & control , Immunoblotting , Immunoglobulins , Injections, Intraperitoneal , Metalloendopeptidases/antagonists & inhibitors , Metalloendopeptidases/toxicity , Mice , Mice, Inbred BALB C , Neutralization Tests
9.
Toxicon ; 56(6): 1059-1065, Jul 17, 2010.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1068259

ABSTRACT

BaP1 is a P-I class of Snake Venom Metalloproteinase (SVMP) relevant in the local tissue damage associated with envenomations by Bothrops asper, a medically-important species in Central America and parts of South America. Six monoclonal antibodies (MoAb) against BaP1 (MABaP1) were produced and characterized regarding their isotype, dissociation constant (Kd), specificity and ability to neutralize BaP1-induced hemorrhagic and proteolytic activity. Two MABaP1 are IgM, three are IgG1 and one is IgG2b. The Kds of IgG MoAbs were in the nM range. All IgG MoAbs recognized conformational epitopes of BaP1 and B. asper venom components but failed to recognize venoms from 27 species of Viperidae, Colubridae and Elapidae families. Clone 7 cross-reacted with three P-I SVMPs tested (moojeni protease, insularinase and neuwiedase). BaP1-induced hemorrhage was totally neutralized by clones 3, 6 and 8 but not by clone 7. Inhibition of BaP1 enzymatic activity on a synthetic substrate by MABaP1 was totally achieved by clones 3 and 6, and partially by clone 8, but not by clone 7. In conclusion, these neutralizing MoAbs against BaP1 may become important tools to understand structure–function relationships of BaP1 and the role of P-I class SVMP in snakebite envenomation.


Subject(s)
Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/immunology , Antivenins/immunology , Bothrops/classification , Metalloproteases/classification , Metalloproteases/toxicity , Snake Venoms/immunology , Antibodies, Neutralizing , Colubridae , Elapidae , Viperidae
10.
Toxicon ; 51(4): 479-87, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18262214

ABSTRACT

Local and systemic hemorrhages are major problems concerning bites by viper snakes. Therefore, accessing venom hemorrhagic activity is an important feature in order to characterize viper venom major toxicities or to assay antivenom efficacy. The methods currently used to access hemorrhagic activity involve animal experiments and according to the general ethical committees, these procedures should be substituted to in vitro assays in order to minimize animal use in research. In this work, we have developed an immunoassay to detect the content of hemorrhagic metalloproteinases in snake venoms using a neutralizing monoclonal antibody anti-jararhagin (MAJar 3). The correlation between the reactivity of this monoclonal antibody and venom-induced hemorrhage was further revealed by a study comparing the hemorrhagic activity of venom samples collected individually from 88 specimens of Bothrops jararacussu with their reactivity with MAJar 3. As a result, a significant correlation (r=0.942) was achieved between samples hemorrhagic activity and their reactivity with MAJar 3, suggesting that this assay can be used as a substitute of the conventional tests performed in vivo to estimate the hemorrhagic activity.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/enzymology , Crotalid Venoms/toxicity , Enzyme-Linked Immunosorbent Assay/methods , Hemorrhage/chemically induced , Metalloproteases/analysis , Animals , Antibodies, Monoclonal , Mice , Proteins/metabolism , Rabbits , Reptilian Proteins/metabolism , Reptilian Proteins/toxicity
11.
Biochimie ; 90(3): 484-92, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18096518

ABSTRACT

Snake venom metalloproteinases (SVMPs) are multifunctional enzymes involved in several symptoms following snakebite, such as severe local hemorrhage. Multidomain P-III SVMPs are strongly hemorrhagic, whereas single domain P-I SVMPs are not. This indicates that disintegrin-like and cysteine-rich domains allocate motifs that enable catalytic degradation of ECM components leading to disruption of capillary vessels. Interestingly, some P-III SVMPs are completely devoid of hemorrhagic activity despite their highly conserved disintegrin-like and cysteine-rich domains. This observation was approached in the present study by comparing the effects of jararhagin, a hemorrhagic P-III SVMP, and berythractivase, a pro-coagulant and non-hemorrhagic P-III SVMP. Both toxins inhibited collagen-induced platelet aggregation, but only jararhagin was able to bind to collagen I with high affinity. The monoclonal antibody MAJar 3, that neutralizes the hemorrhagic effect of Bothrops venoms and jararhagin binding to collagen, did not react with berythractivase. The three-dimensional structures of jararhagin and berythractivase were compared to explain the differential binding to collagen and MAJar 3. Thereby, we pinpointed a motif within the Da disintegrin subdomain located opposite to the catalytic domain. Jararhagin binds to both collagen I and IV in a triple helix-dependent manner and inhibited in vitro fibrillogenesis. The jararhagin-collagen complex retained the catalytic activity of the toxin as observed by hydrolysis of fibrin. Thus, we suggest that binding of hemorrhagic SVMPs to collagens I and IV occurs through a motif located in the Da subdomain. This allows accumulation of toxin molecules at the site of injection, close to capillary vessels, where their catalytic activity leads to a local hemorrhage. Toxins devoid of this motif would be more available for vascular internalization leading to systemic pro-coagulant effects. This reveals a novel function of the disintegrin domain in hemorrhage formation.


Subject(s)
Collagen/drug effects , Crotalid Venoms/toxicity , Metalloendopeptidases/toxicity , Amino Acid Sequence , Animals , Binding Sites , Collagen/chemistry , Collagen/metabolism , Crotalid Venoms/chemistry , Crotalid Venoms/metabolism , Metalloendopeptidases/chemistry , Metalloendopeptidases/metabolism , Models, Molecular , Molecular Sequence Data , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/metabolism , Bothrops jararaca Venom
12.
Toxicon ; 51(1): 54-65, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17889921

ABSTRACT

Snake venom metalloproteinases (SVMPs) have been extensively studied and their effects associated with the local bleeding observed in human accidents by viper snakes. Representatives of P-I and P-III classes of SVMPs similarly hydrolyze extracellular matrix proteins or coagulation factors while only P-III SVMPs induce significant hemorrhage in experimental models. In this work, the effects of P-I and P-III SVMPs on plasma proteins and cultures of muscle and endothelial cells were compared in order to enlighten the mechanisms involved in venom-induced hemorrhage. To reach this comparison, BnP1 was isolated from B. neuwiedi venom and used as a weakly hemorrhagic P-I SVMPs and jararhagin was used as a model of potently hemorrhagic P-III SVMP. BnP1 was isolated by size exclusion and anion-exchange chromatographies, showing apparent molecular mass of approximately 24kDa and sequence similarity with other members of SVMPs, which allowed its classification as a group P-I SVMP. The comparison of local effects induced by SVMPs showed that BnP1 was devoid of significant myotoxic and hemorrhagic activities and jararhagin presented only hemorrhagic activity. BnP1 and jararhagin were able to hydrolyze fibrinogen and fibrin, although the latter displayed higher activity in both systems. Using HUVEC primary cultures, we observed that BnP1 induced cell detachment and a decrease in the number of viable endothelial cells in levels comparable to those observed by treatment with jararhagin. Moreover, both BnP1 and jararhagin induced apoptosis in HUVECs while only a small increase in LDH supernatant levels was observed after treatment with jararhagin, suggesting that the major mechanism involved in endothelial cell death is apoptosis. Jararhagin and BnP1 induced little effects on C2C12 muscle cell cultures, characterized by a partial detachment 24h after treatment and a mild necrotic effect as evidenced by a small increase in the supernatants LDH levels. Taken together, our data show that P-I and P-III SVMPs presented comparable effects except for the hemorrhagic activity, suggesting that hydrolysis of coagulation factors or damage to endothelial cells are not sufficient for induction of local bleeding.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/chemistry , Metalloendopeptidases/pharmacology , Metalloproteases/pharmacology , Amino Acid Sequence , Animals , Benchmarking , Blood Coagulation Factors , Cells, Cultured , Crotalid Venoms/pharmacology , Endothelial Cells/drug effects , Hemorrhage/chemically induced , Humans , Metalloendopeptidases/chemistry , Metalloproteases/chemistry , Mice , Molecular Sequence Data , Bothrops jararaca Venom
13.
Curr Pharm Des ; 13(28): 2893-905, 2007.
Article in English | MEDLINE | ID: mdl-17979734

ABSTRACT

Snake venom metalloproteinases (SVMPs) are widely distributed in snake venoms and play important roles in hemostatic disorders and local tissue damage that follows snakebite. The impact of SVMPs on hemostasis has been extensively studied showing diverse effects both on soluble factors and cellular components. The action of SVMPs involves catalytic and anti-adhesive properties, as well as direct cellular activation and/or the release of endogenous bioactive components. The purpose of this review is to overview the action of SVMPs on the inhibition of platelet functions; angiogenesis, particularly inducing apoptosis of endothelial cells; and regarding the pro-inflammatory reaction that follows snakebite. We discuss the structural features of the molecules that may be involved in such activities. The versatility and availability of SVMPs make them important tools for cell biology research into the mechanisms of action of endogenous metalloproteinases, for insights into cellular-matrix interactions and for clinical investigations into the treatment of snakebites.


Subject(s)
Blood Platelets/enzymology , Endothelial Cells/enzymology , Inflammation Mediators/physiology , Metalloproteases/physiology , Snake Venoms/enzymology , Animals , Blood Platelets/pathology , Endothelial Cells/pathology , Humans , Inflammation Mediators/chemistry , Metalloproteases/chemistry , Snake Venoms/chemistry
14.
Toxicon ; 47(5): 591-6, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16564063

ABSTRACT

Jararhagin is a multi-domain SVMP from Bothrops jararaca venom comprising catalytic, disintegrin-like and cysteine-rich domains, which cause a local reaction manifested by hemorrhage, edema, cytokine release and inflammatory cell recruitment. In this study, the importance of disintegrin-like/cysteine-rich domains of jararhagin was addressed by analyzing the effects of jararhagin-C, which lacks the catalytic domain, in induction of leukocyte rolling and release of pro-inflammatory cytokines. Jararhagin-C was isolated from B. jararaca venom conserving the same ability of complete jararhagin molecule in inhibiting collagen-induced platelet-aggregation. Treatment of trans-illuminated cremaster muscle in vivo with jararhagin-C increased number of rolling leukocytes (approximately 250%) in post-capillary venules in all periods analyzed, without interfering with microvasculature haemodynamic, like vessel diameter, the erythrocyte speed or the blood flow rate. The release of pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6 was significantly enhanced in the local of jararhagin-C injection, showing the maximum levels in periods between 2 and 4 h after treatment. Besides the action of jararhagin-C, the presence of the inactivated catalytic domain in o-phenanthrolin-treated jararhagin was related to a higher increase in the number of rolling leukocytes. Moreover, the levels of IL-6 and IL-1beta induced by catalytically active jararhagin were higher than those induced by jararhagin-C. In conclusion, our findings suggest that the disintegrin-like/cysteine-rich domains of jararhagin are sufficient to locally activate the early events of an acute inflammatory response as leukocyte rolling and pro-inflammatory cytokine release and this action may add to the effect of catalysis, which enhances the primary cell activation.


Subject(s)
Crotalid Venoms/chemistry , Crotalid Venoms/toxicity , Cysteine/chemistry , Disintegrins/chemistry , Inflammation/chemically induced , Metalloendopeptidases/chemistry , Metalloendopeptidases/toxicity , Animals , Bothrops/metabolism , Catalytic Domain , Cytokines , Endothelium, Vascular/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Leukocyte Rolling/drug effects , Mice , Muscle, Skeletal/blood supply , Muscle, Skeletal/cytology , Platelet Aggregation Inhibitors , Time Factors , Venules , Bothrops jararaca Venom
15.
Biochimie ; 88(6): 693-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16488069

ABSTRACT

Thalassophryne nattereri (niquim) is a venomous fish found on the northern and northeastern coasts of Brazil. Every year, hundreds of humans are affected by the poison, which causes excruciating local pain, edema, and necrosis, and can lead to permanent disabilities. In experimental models, T. nattereri venom induces edema and nociception, which are correlated to human symptoms and dependent on venom kininogenase activity; myotoxicity; impairment of blood flow; platelet lysis and cytotoxicity on endothelial cells. These effects were observed with minute amounts of venom. To characterize the primary structure of T. nattereri venom toxins, a list of transcripts within the venom gland was made using the expressed sequence tag (EST) strategy. Here we report the analysis of 775 ESTs that were obtained from a directional cDNA library of T. nattereri venom gland. Of these ESTs, 527 (68%) were related to sequences previously described. These were categorized into 10 groups according to their biological functions. Sequences involved in gene and protein expression accounted for 14.3% of the ESTs, reflecting the important role of protein synthesis in this gland. Other groups included proteins engaged in the assembly of disulfide bonds (0.5%), chaperones involved in the folding of nascent proteins (1.4%), and sequences related to clusterin (1.5%), as well as transcripts related to calcium binding proteins (1.0%). We detected a large cluster (1.3%) related to cocaine- and amphetamine-regulated transcript (CART), a peptide involved in the regulation of food intake. Surprisingly, several retrotransposon-like sequences (1.0%) were found in the library. It may be that their presence accounts for some of the variation in venom toxins. The toxin category (18.8%) included natterins (18%), which are a new group of kininogenases recently described by our group, and a group of C-type lectins (0.8%). In addition, a considerable number of sequences (32%) was not related to sequences in the databases, which indicates that a great number of new toxins and proteins are still to be discovered from this fish venom gland.


Subject(s)
Expressed Sequence Tags , Fish Venoms/genetics , Fishes, Poisonous/genetics , Gene Expression Profiling , Transcription, Genetic/genetics , Amino Acid Sequence , Animals , Calcium-Binding Proteins , DNA, Complementary/genetics , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Venoms/chemistry , Humans , Lectins, C-Type , Molecular Chaperones , Molecular Sequence Data , Sequence Analysis, DNA
16.
Toxicon ; 47(1): 87-94, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16310237

ABSTRACT

There is an increasing interest of obtaining venom by other ways than from extracting it from snakes captured in the wild. A readily available source of this venom will be useful for all pharmacological and biotechnological studies, as well as providing an improved avenue for treatments of snakebites. Here, we show that secretory cells of venom gland can be a good in vitro apparatus to produce venom. We have maintained and morphologically characterized the secretory cells of the Bothrops jararaca venom gland cultured up to 21 days. The isolated cells assemble into acini that growth in size up to 21st day, instead of adhering to the substrate. Bothropasin, a venom metalloprotease, was localized in secretory vesicles by immunoelectron microscopy and venom was also detected in culture medium in a concentration as high as 63 microg/ml. These data show that the acini formed in culture are functionally viable; they can produce and secrete venom.


Subject(s)
Bothrops , Crotalid Venoms/metabolism , Exocrine Glands/cytology , Metalloendopeptidases/metabolism , Venoms/biosynthesis , Animals , Blotting, Western , Cells, Cultured , Crotalid Venoms/analysis , Culture Media , Exocrine Glands/ultrastructure , Metalloendopeptidases/analysis , Microscopy, Immunoelectron , Time Factors
17.
Biochimie ; 88(6): 693-699, 2006.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1060831

ABSTRACT

Thalassophryne nattereri (niquim) is a venomous fish found on the northern and northeastern coasts of Brazil. Every year, hundreds of humans are affected by the poison, which causes excruciating local pain, edema, and necrosis, and can lead to permanent disabilities. In experimental models, T. nattereri venom induces edema and nociception, which are correlated to human symptoms and dependent on venom kininogenase activity; myotoxicity; impairment of blood flow; platelet lysis and cytotoxicity on endothelial cells. These effects were observed with minute amounts of venom. To characterize the primary structure of T. nattereri venom toxins, a list of transcripts within the venom gland was made using the expressed sequence tag (EST) strategy. Here we report the analysis of 775 ESTs that were obtained from a directional cDNA library of T. nattereri venom gland.


Subject(s)
Animals , Expressed Sequence Tags , Fishes, Poisonous/genetics , Fish Proteins/genetics , Fish Proteins/chemistry , Amino Acid Sequence/genetics , Fish Venoms/genetics , Fish Venoms/chemistry , Sequence Analysis, DNA , Gene Expression Profiling , Calcium-Binding Proteins
18.
Apoptosis ; 10(4): 851-61, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16133875

ABSTRACT

Jararhagin is a snake venom metalloproteinase (SVMP) from Bothrops jararaca involved in several hemostatic and inflammatory disorders that occur in human envenomings. In this study, we evaluated the effect of jararhagin on endothelial cells (tEnd). The exposure of tEnd to jararhagin (20 and 40microg/ml) resulted in apoptosis with activation of pro-caspase-3 and alterations in the ratio between Bax/Bcl-xL. We observed that apoptosis was followed by decrease of cell viability and the loss of cell adhesion. Jararhagin induced changes in cell shape with a decrease in cell spreading, rounding up and detachment. This was accompanied by a rearrangement of actin network and a decrease in FAK association to actin and in tyrosine phosphorylated proteins. Morphological alterations and apoptosis were abolished when jararhagin catalytic activity was inhibited, indicating the importance of catalysis. Treatment of murine peritoneal adherent cells or fibroblasts with jararhagin did not result in apoptosis. The data indicate that the pro-apoptotic effect of jararhagin is selective to endothelial cells, interfering with the adhesion mechanisms and inducing anoikis. The present model might be useful for the study of the relationships between the architectural changes in the cytoskeleton and the complex phenomenon named anoikis.


Subject(s)
Anoikis/drug effects , Crotalid Venoms/pharmacology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Metalloendopeptidases/pharmacology , Metalloproteases/pharmacology , Snake Venoms/enzymology , Actins/metabolism , Animals , Bothrops , Caspase 3/metabolism , Cell Adhesion/drug effects , Cell Line , Cell Line, Transformed , Cell Shape/drug effects , Cell Survival/drug effects , Cytoskeleton/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Kinetics , Male , Mice , Mice, Inbred BALB C , Phosphorylation/drug effects , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism , Bothrops jararaca Venom
19.
Biochimie ; 87(8): 687-99, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16054523

ABSTRACT

A novel family of proteins with kininogenase activity and unique primary structure was characterized using combined pharmacological, proteomic and transcriptomic approaches of Thalassophryne nattereri fish venom. The major venom components were isolated and submitted to bioassays corresponding to its main effects: nociception and edema. These activities were mostly located in one fraction (MS3), which was further fractionated. The isolated protein, named natterin, was able to induce edema, nociception and cleave human kininogen and kininogen-derived synthetic peptides, releasing kallidin (Lys-bradykinin). The enzymatic digestion was inhibited by kallikrein inhibitors as Trasylol and TKI. Natterin N-terminal peptide showed no similarity with already known proteins present in databanks. Primary structure of natterin was obtained by a transcriptomic approach using a representative cDNA library constructed from T. nattereri venom glands. Several expressed sequence tags (ESTs) were obtained and processed by bioinformatics revealing a major group (18%) of related sequences unknown to gene or protein sequence databases. This group included sequences showing the N-terminus of isolated natterin and was named Natterin family. Analysis of this family allowed us to identify five related sequences, which we called natterin 1-4 and P. Natterin 1 and 2 sequences include the N-terminus of the isolated natterin. Furthermore, internal peptides of natterin 1-3 were found in major spots of whole venom submitted to mass spectrometry/2DGE. Similarly to the ESTs, the complete sequences of natterins did not show any significant similarity with already described tissue kallikreins, kininogenases or any proteinase, all being entirely new. These data present a new task for the knowledge of the action of kininogenases and may help in understanding the mechanisms of T. nattereri fish envenoming, which is an important medical problem in North and Northeast of Brazil.


Subject(s)
Batrachoidiformes/metabolism , Fish Venoms/isolation & purification , Kallikreins/isolation & purification , Amino Acid Sequence , Animals , Base Sequence , Chromatography, Gel , Electrophoresis, Gel, Two-Dimensional , Fish Venoms/chemistry , Fishes, Poisonous , Gene Library , Kallikreins/chemistry , Molecular Sequence Data , Sequence Alignment
20.
Biochimie ; 87(8): 687-699, aug.2005.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1060829

ABSTRACT

A novel family of proteins with kininogenase activity and unique primary structure was characterized using combined pharmacological, proteomic and transcriptomic approaches of Thalassophryne nattereri fish venom. The major venom components were isolated and submitted to bioassays corresponding to its main effects: nociception and edema. These activities were mostly located in one fraction (MS3), which was further fractionated. The isolated protein, named natterin, was able to induce edema, nociception and cleave human kininogen and kininogen-derived synthetic peptides, releasing kallidin (Lys-bradykinin). The enzymatic digestion was inhibited by kallikrein inhibitors as Trasylol and TKI. Natterin N-terminal peptide showed no similarity with already known proteins present in databanks. Primary structure of natterin was obtained by a transcriptomic approach using a representative cDNA library constructed from T. nattereri venom glands. Several expressed sequence tags (ESTs) were obtained and processed by bioinformatics revealing a major group (18%) of related sequences unknown to gene or protein sequence databases. This group included sequences showing the N-terminus of isolated natterin and was named Natterin family. Analysis of this family allowed us to identify five related sequences, which we called natterin 1-4 and P. Natterin 1 and 2 sequences include the N-terminus of the isolated natterin. Furthermore, internal peptides of natterin 1-3 were found in major spots of whole venom submitted to mass spectrometry/2DGE. Similarly to the ESTs, the complete sequences of natterins did not show any significant similarity with already described tissue kallikreins, kininogenases or any proteinase, all being entirely new. These data present a new task for the knowledge of the action of kininogenases and may help in understanding the mechanisms of T. nattereri fish envenoming, which is an important medical problem in North and Northeast of Brazil.


Subject(s)
Animals , Batrachoidiformes/metabolism , Kallikreins/isolation & purification , Kallikreins/chemistry , Fishes, Poisonous/classification , Fish Venoms/isolation & purification , Fish Venoms/chemistry , Gene Library , Brazil , Chromatography, Gel , Molecular Sequence Data , Electrophoresis, Gel, Two-Dimensional , Proteins , Amino Acid Sequence
SELECTION OF CITATIONS
SEARCH DETAIL
...