Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 22 Suppl 2: A425-37, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24922252

ABSTRACT

We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

2.
Langmuir ; 28(1): 251-8, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22129090

ABSTRACT

This paper describes the electro-optic response of a suspension of disk-like colloids. We have considered aqueous suspensions of Gibbsite platelets and measured the electrically induced birefringence in the broad frequency range 10(2)-10(8) Hz. When simply dispersed in an electrolyte solution, these particles orient with their major axis parallel to the electric field at all frequencies. The spectral dependence of their Kerr coefficient features three regimes: an electrokinetic α-relaxation within the kHz range, a conductive Maxwell-Wagner-O'Konski (MWO) relaxation having characteristic frequency in the 1-10 MHz range, and a nonzero high frequency asymptote. We quantitatively analyze the MWO spectral component and the high-frequency asymptote on the basis of a model developed for oblate particles. This analysis enables us to obtain the relevant particle properties: surface conductivity, zeta potential, and intrinsic Gibbsite birefringence. When the particles are dispersed in a mixture that also contains smaller spherical particles that have a charge of the same sign, their electric birefringence becomes negative at low frequency. This anomalous orientation of the platelets is analogous to that observed in mixtures of prolate and spherical particles, and demonstrates the anomalous birefringence as a universal property of suspensions of nonspherical particles when surrounded by smaller charged particles.


Subject(s)
Blood Platelets/chemistry , Electricity , Blood Platelets/ultrastructure , Humans , Microscopy, Electron, Transmission
3.
Langmuir ; 26(17): 14182-7, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20712370

ABSTRACT

We report the formation of hexagonal columnar liquid crystal phases in suspensions of large (570 nm diameter), sterically stabilized, colloidal gibbsite platelets in organic solvent. In thin cells these systems display strong iridescence originating from hexagonally arranged columns that are predominantly aligned perpendicularly to the cell walls. Small angle X-ray scattering and polarization microscopy indicate the presence of orientational fluctuations in the hexagonal columnar liquid crystal phase. The presence of decoupling of the average platelet orientation and the column axis as well as column undulations leading to a decrease of the effective column diameter are discussed. The fact that these phenomena are particularly pronounced in the vertical direction and are enhanced toward the bottom part of the system points to the role of gravitational compaction on the structure.


Subject(s)
Liquid Crystals/chemistry , Colloids/chemical synthesis , Colloids/chemistry , Particle Size , Surface Properties
4.
J Phys Chem B ; 113(34): 11604-13, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19655775

ABSTRACT

In this paper, we present a comprehensive study of the sol-gel transitions and liquid crystal phase transitions in aqueous suspensions of positively charged colloidal gibbsite platelets at pH 4-5 over a wide range of particle concentrations (50-600 g/L) and salt concentrations (10(-4)-10(-1) M NaCl). A detailed sol-gel diagram was established by oscillatory rheological experiments. These demonstrate the presence of kinetically arrested states both at high and at low salt concentrations, enclosing a sol region. Birefringence and iridescence show that in the sol state nematic and hexagonal columnar liquid crystal phases are formed. The gel and liquid crystal structures are studied in further detail using small-angle X-ray scattering (SAXS) and cryo-focused ion beam/scanning electron microscopy (cryo-FIB-SEM). The gel formed at high salt concentration shows signatures of a sponge-like structure and does not display birefringence. In the sol region, by lowering the salt concentration and/or increasing the gibbsite concentration, the nematic phase gradually transforms from the discotic nematic (ND) into the columnar nematic (NC) with much stronger side-to-side interparticle correlations. Subsequently, this NC structure can be either transformed into the hexagonal columnar phase or arrested into a birefringent repulsive gel state with NC structure.

5.
J Phys Chem B ; 112(33): 10142-52, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18651762

ABSTRACT

Colloidal platelets of hydrotalcite, a layered double hydroxide, have been prepared by coprecipitation at pH 11-12 of magnesium nitrate and aluminum nitrate at two different magnesium to aluminum ratios. Changing the temperature and ionic strength during hydrothermal treatment, the platelets were tailored to different sizes and aspect ratios. Amino-modified polyisobutylene molecules were grafted onto the platelets following a convenient new route involving freeze-drying. Organic dispersions in toluene were prepared of the particles with the largest size and highest aspect ratio. The colloidal dispersions prepared in this way showed isotropic-nematic phase transitions above a limiting concentration in a matter of days. The number density at the transition and the width of the biphasic region were determined and compared to theory. The orientation of the platelets in nematic droplets (tactoids) and at the isotropic-nematic interface were analyzed by polarization microscopy. It was observed that sedimentation induces a nematic layer in samples that are below the limiting concentration for isotropic-nematic phase separation. No nematic phase was observed in the initial aqueous suspensions of the ungrafted particles.

6.
Langmuir ; 23(2): 399-401, 2007 Jan 16.
Article in English | MEDLINE | ID: mdl-17209585

ABSTRACT

The polyoxometalates, or POMs (clusters comprising at least two metal and many oxygen atoms), have recently gained significant interest, owing to their versatile architecture and especially catalytic activities. Due to their high catalytic activity but low surface area, there is always a demand for making high-surface-area POMs, particularly high-surface-area Keggins. Our present work demonstrates the 'gluing' of the anionic phosphomolybdate Keggin on gibbsite nanoplatelets with a residual positive charge to form large-surface-area composites. The resulting composite reported here has been characterized using TEM imaging, EDX/TEM (elemental) analysis, FTIR spectroscopy, potentiometric titrations, electrophoretic mobility determination, and XRD. The composite reported here could be useful in catalysis.

7.
Phys Rev Lett ; 96(2): 028304, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16486657

ABSTRACT

The effect of a nonspherical particle shape and shape polydispersity on the structure of densely packed hard colloidal particles was studied in real space by confocal microscopy. We show that the first layer at the wall of concentrated size-monodisperse but shape-polydisperse polyhedral colloids exhibits significant deviations from a hexagonal lattice. These deviations are identified as bond-orientational fluctuations which lead to percolating "mismatch lines." While the shape-induced geometrical frustration of the hexagonal symmetry suppresses translational order, bond-orientational order is clearly retained, indicating a hexaticlike structure of the polyhedral colloids.

SELECTION OF CITATIONS
SEARCH DETAIL
...