Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Saudi J Biol Sci ; 28(7): 3870-3879, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34220242

ABSTRACT

This study looked at the synergistic effect of Pseudomonas alkylphenolica PF9 and Sinorhizobium meliloti Rm41 on the Moroccan alfalfa population (Oued Lmaleh) grown under symbiotic nitrogen fixation and limited phosphorus (P) availability. The experiment was conducted in a growth chamber and after two weeks of sowing, the young seedlings were inoculated with Sinorhizobium meliloti Rm41 alone or combined with a suspension of Pseudomonas alkylphenolica PF9. Then, the seedlings were submitted to limited available P (insoluble P using Ca3HPO4) versus a soluble P form (KH2PO4) at a final concentration of 250 µmol P·plant-1·week-1. After two months of P stress, the experiment was evaluated through some agro-physiological and biochemical parameters. The results indicated that the inoculation of alfalfa plants with Sinorhizobium strain alone or combined with Pseudomonas strain significantly (p < 0.001) improved the plant growth, the physiological and the biochemical traits focused in comparison to the uninoculated and P-stressed plants. For most sets of parameters, the improvement was more obvious in plants co-inoculated with both strains than in those inoculated with Sinorhizobium meliloti Rm41 alone. In fact, under limited P-availability, the co-inoculation with two strains significantly (p < 0.01) enhanced the growth of alfalfa plants evaluated by fresh and dry biomasses, plant height and leaf area. The results indicated also that the enhancement noted in plant growth was positively correlated with the shoot and root P contents. Furthermore, the incensement in plant P contents in response to bacterial inoculation improved cell membrane stability, reflected by low malonyldialdehyde (MDA) and electrolyte leakage (EL) contents, and photosynthetic-related parameters such as chlorophyll contents, the maximum quantum yield of PS II (Fv/Fm) and stomatal conductance (gs). Our findings suggest that Pseudomonas alkylphenolica PF9 can act synergistically with Sinorhizobium meliloti Rm41 in promoting alfalfa growth under low-P availability.

2.
PLoS One ; 12(12): e0190284, 2017.
Article in English | MEDLINE | ID: mdl-29281721

ABSTRACT

Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD), Luz d'Otonio (LO) and Reina Mora (RM) to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity). A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase) are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes.


Subject(s)
Adaptation, Physiological , Nitrogen Fixation , Vicia faba/physiology , Water , Genotype , Oxidation-Reduction , Photosynthesis , Vicia faba/genetics , Vicia faba/growth & development , Vicia faba/metabolism
3.
Braz. arch. biol. technol ; 60: e17160325, 2017. tab, graf
Article in English | LILACS | ID: biblio-951479

ABSTRACT

ABSTRACT The effect of the water deficit on the fresh and dry weight in the various parts of the plant and on several mineral processes in different symbiotic combinations for the chickpea (Cicer arietinum L.) varieties was studied. The experiment was undertaken in the greenhouse during five weeks.Seedlings were separately inoculated with a suspension of three rhizobia strains and were grown under water deficit (50% of field capacity). Our results showed that the inoculation with the adequate rhizobia may improve the chickpea dry weight by improving the nodules weight, increase NR activity and more K+ accumulation under water deficit. Generally, MC0415 (S1) strain gives the best results, particularly in the dry weight nodules (5% of reduction) and in parallel higher NR activity was notedinthenodule systems (0.8±0.02 μmol NO2-g FW-1h-1) with the combination V46-S1. We note a strong correlation between the dry weights of the various parts of the plantand the studied variables (NRA, Na+, andK+).

SELECTION OF CITATIONS
SEARCH DETAIL
...