Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Front Plant Sci ; 13: 1058522, 2022.
Article in English | MEDLINE | ID: mdl-36684772

ABSTRACT

The phenotypic variation of vegetative organs and reproductive organs of newly synthesized and natural Arabidopsis kamchatica genotypes was investigated in both a controlled environment and a natural environment in an experimental garden. When we compared the variation of their leaf shape as a vegetative organ, the synthetic A. kamchatica individuals grown in the garden showed larger variation compared with the individuals incubated in a growth chamber, suggesting enhanced phenotypic variation in a natural fluctuating environment. In contrast, the natural A. kamchatica genotypes did not show significant change in variation by growth condition. The phenotypic variation of floral organs by growth condition was much smaller in both synthetic and natural A. kamchatica genotypes, and the difference in variation width between the growth chamber and the garden was not significant in each genotype as well as among genotypes. The higher phenotypic variation in synthetic leaf may imply flexible transcriptomic regulation of a newly synthesized polyploid compared with a natural polyploid.

3.
BMC Ecol Evol ; 21(1): 197, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34727890

ABSTRACT

BACKGROUND: Quaternary climate fluctuations have been acknowledged as major drivers of the geographical distribution of the extraordinary biodiversity observed in tropical biomes, including Madagascar. The main existing framework for Pleistocene Malagasy diversification assumes that forest cover was strongly shaped by warmer Interglacials (leading to forest expansion) and by cooler and arid glacials (leading to forest contraction), but predictions derived from this scenario for forest-dwelling animals have rarely been tested with genomic datasets. RESULTS: We generated genomic data and applied three complementary demographic approaches (Stairway Plot, PSMC and IICR-simulations) to infer population size and connectivity changes for two forest-dependent primate species (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. The analyses suggested major demographic changes in both species that could be interpreted in two ways, depending on underlying model assumptions (i.e., panmixia or population structure). Under panmixia, the two species exhibited larger population sizes across the Last Glacial Maximum (LGM) and towards the African Humid Period (AHP). This peak was followed by a population decline in M. ravelobensis until the present, while M. murinus may have experienced a second population expansion that was followed by a sharp decline starting 3000 years ago. In contrast, simulations under population structure suggested decreasing population connectivity between the Last Interglacial and the LGM for both species, but increased connectivity during the AHP exclusively for M. murinus. CONCLUSION: Our study shows that closely related species may differ in their responses to climatic events. Assuming that Pleistocene climatic conditions in the lowlands were similar to those in the Malagasy highlands, some demographic dynamics would be better explained by changes in population connectivity than in population size. However, changes in connectivity alone cannot be easily reconciled with a founder effect that was shown for M. murinus during its colonization of the northwestern Madagascar in the late Pleistocene. To decide between the two alternative models, more knowledge about historic forest dynamics in lowland habitats is necessary. Altogether, our study stresses that demographic inferences strongly depend on the underlying model assumptions. Final conclusions should therefore be based on a comparative evaluation of multiple approaches.


Subject(s)
Cheirogaleidae , Animals , Cheirogaleidae/genetics , Demography , Ecosystem , Madagascar , Sympatry
4.
Heredity (Edinb) ; 126(6): 896-912, 2021 06.
Article in English | MEDLINE | ID: mdl-33846579

ABSTRACT

Inferring the demographic history of species is one of the greatest challenges in populations genetics. This history is often represented as a history of size changes, ignoring population structure. Alternatively, when structure is assumed, it is defined a priori as a population tree and not inferred. Here we propose a framework based on the IICR (Inverse Instantaneous Coalescence Rate). The IICR can be estimated for a single diploid individual using the PSMC method of Li and Durbin (2011). For an isolated panmictic population, the IICR matches the population size history, and this is how the PSMC outputs are generally interpreted. However, it is increasingly acknowledged that the IICR is a function of the demographic model and sampling scheme with limited connection to population size changes. Our method fits observed IICR curves of diploid individuals with IICR curves obtained under piecewise stationary symmetrical island models. In our models we assume a fixed number of time periods during which gene flow is constant, but gene flow is allowed to change between time periods. We infer the number of islands, their sizes, the periods at which connectivity changes and the corresponding rates of connectivity. Validation with simulated data showed that the method can accurately recover most of the scenario parameters. Our application to a set of five human PSMCs yielded demographic histories that are in agreement with previous studies using similar methods and with recent research suggesting ancient human structure. They are in contrast with the view of human evolution consisting of one ancestral population branching into three large continental and panmictic populations with varying degrees of connectivity and no population structure within each continent.


Subject(s)
Gene Flow , Genetics, Population , Diploidy , Humans , Population Density
5.
Stereotact Funct Neurosurg ; 92(5): 291-9, 2014.
Article in English | MEDLINE | ID: mdl-25247282

ABSTRACT

INTRODUCTION: The nucleus accumbens (Acc) is a basal forebrain structure integrated in the dopaminergic cerebral rewarding circuits and implicated in some neuropsychiatric disorders. It has become a target for deep brain stimulation for some of these disorders when refractory to medical treatment. However, it is controversial as to which target is the best and similar results have been achieved with the stimulation of neighboring structures such as the bed nucleus of the stria terminalis (BNST). Previous studies have established the stereotactic anatomy of the human Acc, but some difficulties remain concerning its precise posterior limit, which is assumed to be at the level of the anterior commissure (AC). It is our purpose to clarify the anatomy of this zone, given the importance of its exact identification in psychosurgery. METHODS: A total of 16 Acc were collected by autopsy, fixed, dissected, embedded and cut in coronal 5-µm slices. The slices were stained with hematoxylin and eosin, marked with anti-D1 and anti-D2 antibodies and analyzed under a microscope. RESULTS: The human Acc has the same cellular structure as the dorsal striatum, except in its posterior subcommissural part where voluminous neurons prevail, similar to and contiguous with the BNST. CONCLUSIONS: The Acc is longer than previously described, with a sub- and postcommissural extension behind the AC, continuous with the BNST.


Subject(s)
Deep Brain Stimulation/methods , Nucleus Accumbens/anatomy & histology , Psychosurgery/methods , Brain Mapping/methods , Humans , Neurons/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/surgery , Receptors, Dopamine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...