Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(2): 113705, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38307025

ABSTRACT

Nerve growth factor receptor (NGFR) is expressed by follicular dendritic cells (FDCs). However, the role of NGFR in the humoral response is not well defined. Here, we study the effect of Ngfr loss on lymph node organization and function, demonstrating that Ngfr depletion leads to spontaneous germinal center (GC) formation and an expansion of the GC B cell compartment. In accordance with this effect, stromal cells are altered in Ngfr-/- mice with a higher frequency of FDCs, characterized by CD21/35, MAdCAM-1, and VCAM-1 overexpression. GCs are located ectopically in Ngfr-/- mice, with lost polarization together with impaired high-affinity antibody production and an increase in circulating autoantibodies. We observe higher levels of autoantibodies in Bcl2 Tg/Ngfr-/- mice, concomitant with a higher incidence of autoimmunity and lower overall survival. Our work shows that NGFR is involved in maintaining GC structure and function, participating in GC activation, antibody production, and immune tolerance.


Subject(s)
Receptor, Nerve Growth Factor , Receptors, Nerve Growth Factor , Animals , Mice , Autoantibodies , Dendritic Cells, Follicular , Germinal Center
2.
Sci Adv ; 9(48): eadh2708, 2023 12.
Article in English | MEDLINE | ID: mdl-38019914

ABSTRACT

Mature lymphoid stromal cells (LSCs) are key organizers of immune responses within secondary lymphoid organs. Similarly, inflammation-driven tertiary lymphoid structures depend on immunofibroblasts producing lymphoid cytokines and chemokines. Recent studies have explored the origin and heterogeneity of LSC/immunofibroblasts, yet the molecular and epigenetic mechanisms involved in their commitment are still unknown. This study explored the transcriptomic and epigenetic reprogramming underlying LSC/immunofibroblast commitment. We identified the induction of lysine demethylase 6B (KDM6B) as the primary epigenetic driver of early immunofibroblast differentiation. In addition, we observed an enrichment for KDM6B gene signature in murine inflammatory fibroblasts and pathogenic stroma of patients with autoimmune diseases. Last, KDM6B was required for the acquisition of LSC/immunofibroblast functional properties, including the up-regulation of CCL2 and the resulting recruitment of monocytes. Overall, our results reveal epigenetic mechanisms that participate in the early commitment and immune properties of immunofibroblasts and support the use of epigenetic modifiers as fibroblast-targeting strategies in chronic inflammation.


Subject(s)
Epigenesis, Genetic , Stromal Cells , Animals , Humans , Mice , Cell Differentiation/genetics , Inflammation , Jumonji Domain-Containing Histone Demethylases/genetics , Up-Regulation
3.
Cancers (Basel) ; 14(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36358756

ABSTRACT

Upregulated expression of the anti-apoptotic BCL2 oncogene is a common feature of various types of B-cell malignancies, from lymphoma to leukemia or myeloma. It is currently unclear how the various patterns of deregulation observed in pathology eventually impact the phenotype of malignant B cells and their microenvironment. Follicular lymphoma (FL) is the most common non-Hodgkin lymphoma arising from malignant germinal center (GC) B-cells, and its major hallmark is the t(14:18) translocation occurring in B cell progenitors and placing the BCL2 gene under the control of the immunoglobulin heavy chain locus regulatory region (IgH 3'RR), thus exposing it to constitutive expression and hypermutation. Translocation of BCL2 onto Ig light chain genes, BCL2 gene amplification, and other mechanisms yielding BCL2 over-expression are, in contrast, rare in FL and rather promote other types of B-cell lymphoma, leukemia, or multiple myeloma. In order to assess the impact of distinct BCL2 deregulation patterns on B-cell fate, two mouse models were designed that associated BCL2 and its full P1-P2 promoter region to either the IgH 3'RR, within a "3'RR-BCL2" transgene mimicking the situation seen in FL, or an Ig light chain locus context, through knock-in insertion at the Igκ locus ("Igκ-BCL2" model). While linkage to the IgH 3' RR mostly yielded expression in GC B-cells, the Igκ-driven up-regulation culminated in plasmablasts and plasma cells, boosting the plasma cell in-flow and the accumulation of long-lived plasma cells. These data demonstrate that the timing and level of BCL2 deregulation are crucial for the behavior of B cells inside GC, an observation that could strongly impact the lymphomagenesis process triggered by secondary genetic hits.

4.
Blood Adv ; 5(23): 5372-5386, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34555842

ABSTRACT

Non-Hodgkin B-cell lymphomas (B-NHL) mainly develop within lymph nodes as aggregates of tumor cells densely packed with their surrounding microenvironment, creating a tumor niche specific to each lymphoma subtypes. In vitro preclinical models mimicking biomechanical forces, cellular microenvironment, and 3D organization of B-cell lymphomas remain scarce, while all these parameters are key determinants of lymphomagenesis and drug resistance. Using a microfluidic method based on cell encapsulation inside permeable, elastic, and hollow alginate microspheres, we developed a new tunable 3D model incorporating lymphoma B cells, extracellular matrix (ECM), and/or tonsil stromal cells (TSC). Under 3D confinement, lymphoma B cells were able to form cohesive spheroids resulting from overexpression of ECM components. Moreover, lymphoma B cells and TSC dynamically formed self-organized 3D spheroids favoring tumor cell growth. 3D culture induced resistance to the classical chemotherapeutic agent doxorubicin, but not to the BCL2 inhibitor ABT-199, identifying this approach as a relevant in vitro model to assess the activity of therapeutic agents in B-NHL. RNA-sequence analysis highlighted the synergy of 3D, ECM, and TSC in upregulating similar pathways in malignant B cells in vitro than those overexpressed in primary lymphoma B cells in situ. Finally, our 3D model including ECM and TSC allowed long-term in vitro survival of primary follicular lymphoma B cells. In conclusion, we propose a new high-throughput 3D model mimicking lymphoma tumor niche and making it possible to study the dynamic relationship between lymphoma B cells and their microenvironment and to screen new anti-cancer drugs.


Subject(s)
Antineoplastic Agents , Lymphoma, B-Cell , Lymphoma, Non-Hodgkin , B-Lymphocytes , Cell Proliferation , Humans , Lymphoma, B-Cell/drug therapy , Tumor Microenvironment
6.
Immunity ; 54(8): 1788-1806.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34166622

ABSTRACT

Lymphoid stromal cells (LSCs) are essential organizers of immune responses. We analyzed tonsillar tissue by combining flow cytometry, in situ imaging, RNA sequencing, and functional assays, defining three distinct human LSC subsets. The integrin CD49a designated perivascular stromal cells exhibiting features of local committed LSC precursors and segregated cytokine and chemokine-producing fibroblastic reticular cells (FRCs) supporting B and T cell survival. The follicular dendritic cell transcriptional profile reflected active responses to B cell and non-B cell stimuli. We therefore examined the effect of B cell stimuli on LSCs in follicular lymphoma (FL). FL B cells interacted primarily with CD49a+ FRCs. Transcriptional analyses revealed LSC reprogramming in situ downstream of the cytokines tumor necrosis factor (TNF) and transforming growth factor ß (TGF-ß), including increased expression of the chemokines CCL19 and CCL21. Our findings define human LSC populations in healthy tissue and reveal bidirectional crosstalk between LSCs and malignant B cells that may present a targetable axis in lymphoma.


Subject(s)
B-Lymphocytes/immunology , Dendritic Cells/immunology , Lymphoma, Follicular/immunology , Lymphoma, Follicular/pathology , Palatine Tonsil/immunology , Stromal Cells/immunology , Cells, Cultured , Chemokine CCL19/metabolism , Chemokine CCL21/metabolism , Humans , Integrin alpha1/metabolism , Palatine Tonsil/cytology , Signal Transduction/immunology , Stromal Cells/cytology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
7.
Methods Mol Biol ; 2236: 57-66, 2021.
Article in English | MEDLINE | ID: mdl-33237540

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are heterogeneous cells that share myeloid markers and are not easily distinguishable in human tumors due to their lack of specific markers. These cells are a major player in the tumor microenvironment and are involved in the prognosis and physiopathology of various tumors. Here is presented a scheme to decipher these cells by mass cytometry.


Subject(s)
Flow Cytometry/methods , Myeloid-Derived Suppressor Cells/pathology , Tumor-Associated Macrophages/pathology , Antibodies/metabolism , Cell Membrane Permeability , Data Analysis , Humans , Phenotype , Staining and Labeling
8.
Proc Natl Acad Sci U S A ; 116(27): 13490-13497, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31213547

ABSTRACT

Resident fibroblasts at sites of infection, chronic inflammation, or cancer undergo phenotypic and functional changes to support leukocyte migration and, in some cases, aggregation into tertiary lymphoid structures (TLS). The molecular programming that shapes these changes and the functional requirements of this population in TLS development are unclear. Here, we demonstrate that external triggers at mucosal sites are able to induce the progressive differentiation of a population of podoplanin (pdpn)-positive stromal cells into a network of immunofibroblasts that are able to support the earliest phases of TLS establishment. This program of events, that precedes lymphocyte infiltration in the tissue, is mediated by paracrine and autocrine signals mainly regulated by IL13. This initial fibroblast network is expanded and stabilized, once lymphocytes are recruited, by the local production of the cytokines IL22 and lymphotoxin. Interfering with this regulated program of events or depleting the immunofibroblasts in vivo results in abrogation of local pathology, demonstrating the functional role of immunofibroblasts in supporting TLS maintenance in the tissue and suggesting novel therapeutic targets in TLS-associated diseases.


Subject(s)
Fibroblasts/pathology , Tertiary Lymphoid Structures/pathology , Animals , Disease Models, Animal , Flow Cytometry , Fluorescent Antibody Technique , Humans , Interleukin-13/metabolism , Interleukins/metabolism , Lymphocytes/pathology , Mice , Salivary Glands/pathology , Interleukin-22
9.
Article in English | MEDLINE | ID: mdl-30003080

ABSTRACT

Fibroblastic reticular cells (FRCs), the T-cell zone stromal cell subtype in the lymph nodes, create a scaffold for adhesion and migration of immune cells, thus allowing them to communicate. Although known to be important for the initiation of immune responses, studies about FRCs and their interactions have been impeded because FRCs are limited in availability and lose their function upon culture expansion. To circumvent these limitations, stromal cell precursors can be mechanotranduced to form mature FRCs. Here, we used a library of designed surface topographies to trigger FRC differentiation from tonsil-derived stromal cells (TSCs). Undifferentiated TSCs were seeded on a TopoChip containing 2176 different topographies in culture medium without differentiation factors, then monitored cell morphology and the levels of ICAM-1, a marker of FRC differentiation. We identified 112 and 72 surfaces that upregulated and downregulated, respectively, ICAM-1 expression. By monitoring cell morphology, and expression of the FRC differentiation marker ICAM-1 via image analysis and machine learning, we discovered correlations between ICAM-1 expression, cell shape and design of surface topographies and confirmed our findings by using flow cytometry. Our findings confirmed that TSCs are mechano-responsive cells and identified particular topographies that can be used to improve FRC differentiation protocols.

10.
Eur Respir J ; 52(2)2018 08.
Article in English | MEDLINE | ID: mdl-29946009

ABSTRACT

Exaggerated release of neutrophil extracellular traps (NETs) along with decreased NET clearance and inability to remove apoptotic cells (efferocytosis) may contribute to sustained inflammation in acute respiratory distress syndrome (ARDS). Recent studies in experimental models of ARDS have revealed the crosstalk between AMP-activated protein kinase (AMPK) and high-mobility group box 1 (HMGB1), which may contribute to effectiveness of efferocytosis, thereby reducing inflammation and ARDS severity.We investigated neutrophil and NET clearance by macrophages from control and ARDS patients and examined how bronchoalveolar lavage (BAL) fluid from control and ARDS patients could affect NET formation and efferocytosis. Metformin (an AMPK activator) and neutralising antibody against HMGB1 were applied to improve efferocytosis and NET clearance.Neutrophils from ARDS patients showed significantly reduced apoptosis. Conversely, NET formation was significantly enhanced in ARDS patients. Exposure of neutrophils to ARDS BAL fluid promoted NET production, while control BAL fluid had no effect. Macrophage engulfment of NETs and apoptotic neutrophils was diminished in ARDS patients. Notably, activation of AMPK in macrophages or neutralisation of HMGB1 in BAL fluid improved efferocytosis and NET clearance.In conclusion, restoration of AMPK activity with metformin or specific neutralisation of HMGB1 in BAL fluid represent promising therapeutic strategies to decrease sustained lung inflammation during ARDS.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Extracellular Traps/metabolism , HMGB1 Protein/metabolism , Macrophages/cytology , Respiratory Distress Syndrome/metabolism , Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Female , Humans , Leukocyte Count , Male , Middle Aged , Neutrophils/metabolism , Phagocytosis , Pneumonia/metabolism , Respiratory Distress Syndrome/physiopathology
11.
Curr Opin Hematol ; 25(4): 335-345, 2018 07.
Article in English | MEDLINE | ID: mdl-29746265

ABSTRACT

PURPOSE OF REVIEW: In addition to the recent progresses in the description of the genetic landscape of B-cell non-Hodgkin's lymphomas, tumor microenvironment has progressively emerged as a central determinant of early lymphomagenesis, subclonal evolution, drug resistance, and late progression/transformation. The purpose of this review is to outline the most recent findings regarding malignant B-cell niche composition and organization supporting direct and indirect tumor-promoting functions of lymphoma microenvironment. RECENT FINDINGS: Lymphoma supportive niche integrates a dynamic and orchestrated network of immune and stromal cell subsets producing, with a high level of spatial and kinetic heterogeneity, extracellular and membrane factors regulating tumor migration, survival, proliferation, immune escape, as well as tumor microarchitecture, and mechanical constraints. Some recent insights have improved our understanding of these various components of lymphoma microenvironment, taking into account the mechanisms underlying the coevolution of malignant and nonmalignant cells within the tumor niche. SUMMARY: Deciphering tumor niche characteristics, functions, and origin could offer new therapeutic opportunities through the targeting of pivotal cellular and molecular components of the supportive microenvironment, favoring immune cell reactivation and infiltration, and/or limiting tumor retention within this protective niche.


Subject(s)
Cell Transformation, Neoplastic , Drug Resistance, Neoplasm/immunology , Lymphoma, B-Cell/metabolism , Tumor Microenvironment/immunology , Animals , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/therapy , Stromal Cells/immunology , Stromal Cells/metabolism , Stromal Cells/pathology
12.
Blood ; 129(18): 2507-2518, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28202459

ABSTRACT

Follicular lymphoma (FL) is the most frequent indolent lymphoma and is characterized by the accumulation of germinal center-derived malignant B cells engaged in a bidirectional crosstalk with their supportive microenvironment in invaded lymph nodes (LNs) and bone marrow (BM). T follicular helper (TFH) cells and infiltrating stromal cells have been shown to favor FL B-cell growth, but the mechanisms of their protumoral effect and how the LN/BM microenvironment is converted into a lymphoma-permissive cell niche remain poorly understood. We demonstrated here that FL-infiltrating LN and BM stromal cells overexpressed CXCL12 in situ. Interleukin-4 high (IL-4hi) FL-TFH cells, unlike FL B cells themselves, triggered CXCL12 upregulation in human stromal cell precursors. In agreement, expression of CXCL12 was associated with IL-4 expression and signaling within the FL BM and LN niches. This IL-4/CXCL12 axis was amplified in activated lymphoid stromal cells as shown in our in vitro model of human lymphoid stroma differentiation and in an inducible mouse model of ectopic lymphoid organ formation. Finally, CXCL12 triggered primary FL B-cell activation, migration, and adhesion, a process antagonized by BTK and PI3K inhibitors. These data identified the IL-4/CXCL12 loop as a previously unrecognized pathway involved in lymphoid stroma polarization and as a potential therapeutic target in FL patients.


Subject(s)
Bone Marrow/immunology , Chemokine CXCL12/immunology , Interleukin-4/immunology , Lymph Nodes/immunology , Lymphoma, Follicular/immunology , Signal Transduction/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Bone Marrow/pathology , Cell Movement/genetics , Cell Movement/immunology , Chemokine CXCL12/genetics , Female , Humans , Interleukin-4/genetics , Lymph Nodes/pathology , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Male , Mice , Mice, Knockout , Signal Transduction/genetics , Stromal Cells/immunology , Stromal Cells/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
13.
Cell ; 167(2): 405-418.e13, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27693350

ABSTRACT

The HVEM (TNFRSF14) receptor gene is among the most frequently mutated genes in germinal center lymphomas. We report that loss of HVEM leads to cell-autonomous activation of B cell proliferation and drives the development of GC lymphomas in vivo. HVEM-deficient lymphoma B cells also induce a tumor-supportive microenvironment marked by exacerbated lymphoid stroma activation and increased recruitment of T follicular helper (TFH) cells. These changes result from the disruption of inhibitory cell-cell interactions between the HVEM and BTLA (B and T lymphocyte attenuator) receptors. Accordingly, administration of the HVEM ectodomain protein (solHVEM(P37-V202)) binds BTLA and restores tumor suppression. To deliver solHVEM to lymphomas in vivo, we engineered CD19-targeted chimeric antigen receptor (CAR) T cells that produce solHVEM locally and continuously. These modified CAR-T cells show enhanced therapeutic activity against xenografted lymphomas. Hence, the HVEM-BTLA axis opposes lymphoma development, and our study illustrates the use of CAR-T cells as "micro-pharmacies" able to deliver an anti-cancer protein.


Subject(s)
Adoptive Transfer/methods , Lymphoma, Follicular/therapy , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/genetics , T-Lymphocytes/immunology , Tumor Suppressor Proteins/genetics , Animals , Antigens, CD19/immunology , B-Lymphocytes/immunology , Cell Proliferation , Humans , Lymphocyte Activation , Lymphoma, Follicular/genetics , Mice , Neoplasms, Experimental/genetics , Neoplasms, Experimental/therapy , Protein Domains , Protein Engineering , Receptors, Tumor Necrosis Factor, Member 14/chemistry , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tumor Microenvironment , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays
14.
Eur J Immunol ; 46(6): 1404-14, 2016 06.
Article in English | MEDLINE | ID: mdl-27067635

ABSTRACT

Interleukin 22 (IL-22) expression is associated with increased joint destruction and disease progression in rheumatoid arthritis (RA). Although IL-22 is considered a pro-inflammatory cytokine, its mechanism of action in RA remains incompletely understood. Here, we used the collagen-induced arthritis model in IL-22 deficient (IL-22(-/-) ) mice to study the role of IL-22 in RA. In spite of normal disease incidence, disease severity is significantly diminished in IL-22(-/-) mice. Moreover, pathogenicity of Th17 cells and development and function of B cells are unaffected. In contrast, splenic plasma cells, as well as serum autoantibody titers, are reduced in the absence of IL-22. At the peak of disease, germinal centers (GCs) are severely reduced in the spleens of IL-22(-/-) mice, correlating with a decline in GC B-cell numbers. Within the GC, we identified IL-22R1 expressing follicular dendritic cell-like stromal cells. Human lymphoid stromal cells respond to IL-22 ex vivo by inducing transcription of CXCL12 and CXCL13. We therefore postulate IL-22 as an important enhancer of the GC reaction, maintaining chemokine levels for the persistence of GC reactions, essential for the production of autoantibody-secreting plasma cells. Blocking IL-22 might therefore prevent immune-complex deposition and destruction of joints in RA patients.


Subject(s)
Antibody Formation/genetics , Antibody Formation/immunology , Arthritis, Experimental/etiology , Autoantibodies/immunology , Interleukins/deficiency , Animals , Antibody Specificity/immunology , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Cells, Cultured , Chemokines/genetics , Chemokines/metabolism , Coculture Techniques , Disease Models, Animal , Germinal Center/immunology , Germinal Center/metabolism , Lymphocyte Activation , Mice , Mice, Knockout , Plasma Cells/immunology , Plasma Cells/metabolism , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Severity of Illness Index , Stromal Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Interleukin-22
15.
Aesthet Surg J ; 36(5): 609-18, 2016 May.
Article in English | MEDLINE | ID: mdl-26530477

ABSTRACT

BACKGROUND: Liposuction is a very popular technique in plastic surgery that allows for the taking adipose tissue (AT) on large surfaces with little risk of morbidity. Although liposuction was previously shown to preserve large perforator vessels, little is known about the effects of liposuction on the microvasculature network. OBJECTIVES: The aim of this study was to analyze the effect of liposuction on the preservation of microvessels at tissue and cellular levels by flow cytometry and confocal microscopy following abdominoplasty procedure. METHODS: Percentage of endothelial cells in AT from liposuction and en bloc AT was determined by multicolor flow cytometry. Moreover, vessel density and adipocyte content were analyzed in situ in 3 different types of AT (en bloc, from liposuction, and residual AT after liposuction) by confocal microscopy. RESULTS: Flow cytometric analysis showed that en bloc AT contained 30.6% ± 12.9% and AT from liposuction 21.6% ± 9.9% of endothelial cells (CD31(pos)/CD45(neg)/CD235a(neg)/CD11b(neg)) (P = .009). Moreover, analysis of paired AT from the same patients (n = 5) confirmed a lower percentage of endothelial cells in AT from liposuction compared to en bloc AT (17.7% ± 4.5% vs 21.9% ± 3.3%, P = .031). Likewise, confocal microscopy showed that en bloc AT contained 8.2% ± 6.3%, AT from liposuction only 1.6% ± 1.0% (P < .0001), and AT after liposuction 8.9% ± 4.1% (P = .111) of CD31(pos) vessels. Conversely, adipocyte content was 39.5% ± 14.5% in the en bloc AT, 45% ± 18.4% in AT from liposuction (P = .390), and 18.8 ± 14.8% in AT after liposuction (P = .011). CONCLUSIONS: For the first time, we demonstrate that liposuction preserves the microvascular network. Indeed, a low percentage of endothelial cells was found in AT from liposuction and we confirm the persistence of microvessels in the tissue after liposuction.


Subject(s)
Adipocytes/physiology , Adipose Tissue/cytology , Endothelial Cells/physiology , Lipectomy/methods , Microvessels/physiology , Abdominoplasty/methods , Adipose Tissue/pathology , Adult , Female , Flow Cytometry , Humans , Male , Microscopy, Confocal , Microvessels/diagnostic imaging , Microvessels/surgery , Middle Aged
16.
Blood ; 126(16): 1911-20, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26272216

ABSTRACT

Follicular lymphoma (FL) results from the accumulation of malignant germinal center (GC) B cells leading to the development of an indolent and largely incurable disease. FL cells remain highly dependent on B-cell receptor (BCR) signaling and on a specific cell microenvironment, including T cells, macrophages, and stromal cells. Importantly, FL BCR is characterized by a selective pressure to retain surface immunoglobulin M (IgM) BCR despite an active class-switch recombination process, and by the introduction, in BCR variable regions, of N-glycosylation acceptor sites harboring unusual high-mannose oligosaccharides. However, the relevance of these 2 FL BCR features for lymphomagenesis remains unclear. In this study, we demonstrated that IgM(+) FL B cells activated a stronger BCR signaling network than IgG(+) FL B cells and normal GC B cells. BCR expression level and phosphatase activity could both contribute to such heterogeneity. Moreover, we underlined that a subset of IgM(+) FL samples, displaying highly mannosylated BCR, efficiently bound dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), which could in turn trigger delayed but long-lasting BCR aggregation and activation. Interestingly, DC-SIGN was found within the FL cell niche in situ. Finally, M2 macrophages induced a DC-SIGN-dependent adhesion of highly mannosylated IgM(+) FL B cells and triggered BCR-associated kinase activation. Interestingly, pharmacologic BCR inhibitors abolished such crosstalk between macrophages and FL B cells. Altogether, our data support an important role for DC-SIGN-expressing infiltrating cells in the biology of FL and suggest that they could represent interesting therapeutic targets.


Subject(s)
Cell Adhesion Molecules/immunology , Gene Expression Regulation/immunology , Immunoglobulin M/immunology , Lectins, C-Type/immunology , Lymphoma, Follicular/immunology , Macrophages/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Cell Surface/immunology , Signal Transduction/immunology , Cell Communication/immunology , Coculture Techniques , Female , Glycosylation , Humans , Lymphoma, Follicular/pathology , Macrophages/pathology , Male , Tumor Cells, Cultured
17.
Oncotarget ; 6(18): 16471-87, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26158216

ABSTRACT

Both tumor-associated neutrophils (TAN) and cancer-associated fibroblasts (CAFs) display specific phenotypic and functional features and contribute to tumor cell niche. However, their bidirectional crosstalk has been poorly studied, in particular in the context of hematological malignancies. Follicular lymphomas (FL) and diffuse large B-cell lymphomas (DLBCL) are two germinal center-derived lymphomas where various cell components of infiltrating microenvironment, including TAN and CAFs, have been demonstrated to favor directly and indirectly malignant B-cell survival, growth, and drug resistance. We show here that, besides a direct and contact-dependent supportive effect of neutrophils on DLBCL B-cell survival, mediated through the BAFF/APRIL pathway, neutrophils and stromal cells cooperate to sustain FL B-cell growth. This cooperation relies on an overexpression of IL-8 by lymphoma-infiltrating stromal cells that could thereafter efficiently promote neutrophil survival and prime them to neutrophil extracellular trap. Conversely, neutrophils are able to activate stromal cells in a NF-κB-dependent manner, inducing their commitment towards an inflammatory lymphoid stroma phenotype associated with an increased capacity to trigger malignant B-cell survival, and to recruit additional monocytes and neutrophils through the release of CCL2 and IL-8, respectively. Altogether, a better understanding of the lymphoma-supporting effects of neutrophils could be helpful to design new anti-tumor therapeutic strategies.


Subject(s)
B-Lymphocytes/pathology , Fibroblasts/metabolism , Interleukin-8/biosynthesis , Lymphoma, Follicular/pathology , Lymphoma, Large B-Cell, Diffuse/pathology , NF-kappa B/metabolism , Neutrophils/metabolism , Adult , Apoptosis/immunology , B-Cell Activating Factor/antagonists & inhibitors , B-Cell Activating Factor/metabolism , B-Cell Activating Factor/pharmacology , B-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Movement/immunology , Cell Survival/physiology , Chemokine CCL2/metabolism , Child , Extracellular Traps/immunology , Germinal Center , Humans , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/metabolism , Interleukin-8/metabolism , Lymphoma, Follicular/immunology , Lymphoma, Large B-Cell, Diffuse/immunology , Neutrophil Infiltration/immunology , Neutrophils/immunology , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type I/metabolism , Stromal Cells/metabolism , Tumor Cells, Cultured , Tumor Microenvironment/physiology
18.
Front Immunol ; 3: 280, 2012.
Article in English | MEDLINE | ID: mdl-22973275

ABSTRACT

Follicular lymphoma (FL) is the prototypical model of indolent B cell lymphoma displaying a strong dependence on a specialized cell microenvironment mimicking normal germinal center. Within malignant cell niches in invaded lymph nodes and bone marrow, external stimuli provided by infiltrating stromal cells make a pivotal contribution to disease development, progression, and drug resistance. The crosstalk between FL B cells and stromal cells is bidirectional, causing activation of both partners. In agreement, FL stromal cells exhibit specific phenotypic, transcriptomic, and functional properties. This review highlights the critical pathways involved in the direct tumor-promoting activity of stromal cells but also their role in the organization of FL cell niche through the recruitment of accessory immune cells and their polarization to a B cell supportive phenotype. Finally, deciphering the interplay between stromal cells and FL cells provides potential new therapeutic targets with the aim to mobilize malignant cells outside their protective microenvironment and increase their sensitivity to conventional treatment.

19.
J Immunol ; 187(8): 3931-41, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21918187

ABSTRACT

The early steps of differentiation of human B cells into plasma cells are poorly known. We report a transitional population of CD20(low/-)CD38(-) preplasmablasts along differentiation of human memory B cells into plasma cells in vitro. Preplasmablasts lack documented B cell or plasma cell (CD20, CD38, and CD138) markers, express CD30 and IL-6R, and secrete Igs at a weaker level than do plasmablasts or plasma cells. These preplasmablasts further differentiate into CD20(-)CD38(high)CD138(-) plasmablasts and then CD20(-)CD38(high)CD138(+) plasma cells. Preplasmablasts were fully characterized in terms of whole genome transcriptome profiling and phenotype. Preplasmablasts coexpress B and plasma cell transcription factors, but at a reduced level compared with B cells, plasmablasts, or plasma cells. They express the unspliced form of XBP1 mRNA mainly, whereas plasmablasts and plasma cells express essentially the spliced form. An in vivo counterpart (CD19(+)CD20(low/-)CD38(-)IL-6R(+) cells) of in vitro-generated preplasmablasts could be detected in human lymph nodes (0.06% of CD19(+) cells) and tonsils (0.05% of CD19(+) cells). An open access "B to Plasma Cell Atlas," which makes it possible to interrogate gene expression in the process of B cell to plasma cell differentiation, is provided. Taken together, our findings show the existence of a transitional preplasmablast population using an in vitro model of plasma cell generation and of its in vivo counterpart in various lymphoid tissues.


Subject(s)
B-Lymphocytes/cytology , Cell Differentiation/immunology , Plasma Cells/cytology , B-Lymphocytes/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Immunophenotyping , Oligonucleotide Array Sequence Analysis , Plasma Cells/immunology , Reverse Transcriptase Polymerase Chain Reaction
20.
Blood ; 117(24): 6552-61, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21511956

ABSTRACT

In the bone marrow (BM), stromal cells constitute a supportive tissue indispensable for the generation of pro-B/pre-BI, pre-BII, and immature B lymphocytes. IL-7-producing stromal cells constitute a cellular niche for pro-B/pre-BI cells, but no specific stromal cell microenvironment was identified for pre-BII cells expressing a functional pre-B cell receptor (pre-BCR). However expression of the pre-BCR represents a crucial checkpoint during B-cell development. We recently demonstrated that the stromal cell derived-galectin1 (GAL1) is a ligand for the pre-BCR, involved in the proliferation and differentiation of normal mouse pre-BII cells. Here we show that nonhematopoietic osteoblasts and reticular cells in the BM express GAL1. We observed that pre-BII cells, unlike the other B-cell subsets, were specifically localized in close contact with GAL1(+) reticular cells. We also determined that IL-7(+) and GAL1(+) cells represent 2 distinct mesenchymal populations with different BM localization. These results demonstrate the existence of a pre-BII specific stromal cell niche and indicate that early B cells move from IL-7(+) to GAL1(+) supportive BM niches during their development.


Subject(s)
Bone Marrow , Galectin 1/metabolism , Precursor Cells, B-Lymphoid/physiology , Stem Cell Niche/physiology , Stromal Cells/physiology , Animals , Bone Marrow/metabolism , Bone Marrow/physiology , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Bone Marrow Cells/physiology , Cell Differentiation/immunology , Cells, Cultured , Green Fluorescent Proteins/genetics , Interleukin-7/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pre-B Cell Receptors/metabolism , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Stem Cell Niche/cytology , Stem Cell Niche/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...