Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Assoc Lab Anim Sci ; 62(2): 131-138, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36746440

ABSTRACT

Infectious agents have varying susceptibilities to thermal inactivation and/or mechanical removal from cages by the use of heated, pressurized water. In this study, we tested whether 5 specific infectious organisms (Candidatus savagella [segmented filamentous bacterium (SFB)], Helicobacter sp., mouse norovirus (MNV), Tritrichomonas sp., and Entamoeba muris) could survive the cage wash process and still infect naïve mice. These 5 organisms were chosen due to their prevalence in rodent colonies, environmental stability, and/or potential to influence experimental outcomes. Cages that had housed mice shedding all 5 organisms were assigned to 1 of 3 treatment groups: 1) sanitization in a tunnel washer followed by autoclaving (121 °C [250 °F] for 20 min; n = 40 cages); 2) sanitization in a tunnel washer (82 °C [180 °F] for an average of 30 s; n = 40 cages); or 3) control (bedding change only; n = 40 cages). The presence of these agents in the cage was assessed by performing PCR on swabs of the empty soiled cage interior before and after the treatment. In addition, to determine if any residual nucleic acid was infectious, 2 Swiss outbred (J:ARC(S)) female mice were housed for 7 d in cages from each treatment group. The above procedures were then repeated so that every week each pair of J:ARC(S) mice ( n = 10 pairs of mice/treatment group) were housed in another cage that underwent the same treatment; this was done for a total of 4 consecutive, 1-wk-long periods. Swabs collected from soiled cages were PCR-positive for SFB, Helicobacter, MNV, Tritrichomonas, and Entamoeba in 99%, 97%, 39%, 63%, and 73% of the cages tested, respectively. Cages in the tunnel wash group that were PCR-positive for SFB, Helicobacter, Tritrichomonas, and Entamoeba before treatment remained PCR-positive in 8%, 15%, 43%, and 10% of positive cages, respectively. None of the cages from the autoclave group were PCR-positive for any of the agents after treatment. None of the mice housed in cages in either the autoclave or tunnel wash groups became infected with any of the agents. However, 80%, 60%, and 100% of the pairs of mice housed in untreated cages were PCR-positive for SFB, MNV, and Entamoeba, respectively. None of the mice housed in untreated cages were positive for Helicobacter or Tritrichomonas. Our results suggest that nucleic acids from these bacterial and protozoal organisms may remain in cages after mechanical cage washing, but these nucleic acids are not infectious, and autoclaving is not necessary to prevent transmission.


Subject(s)
Housing, Animal , Norovirus , Animals , Female , Mice , Polymerase Chain Reaction/veterinary , Bacteria
2.
Lab Anim (NY) ; 50(7): 185-195, 2021 07.
Article in English | MEDLINE | ID: mdl-34127866

ABSTRACT

Animal models play a critical role in establishing causal relationships between gut microbiota and disease. The laboratory mouse is widely used to study the role of microbes in various disorders; however, differences between mouse vendors, genetic lineages and husbandry protocols have been shown to contribute to variation in phenotypes and to non-reproducibility of experimental results. We sought to understand how gut microbiome profiles of mice vary by vendor, vendor production facility and health status upon receipt into an academic facility and how they change over 12 weeks in the new environment. C57BL/6 mice were sourced from two different production sites for each of three different vendors. Mice were shipped to an academic research vivarium, and fresh-catch stool samples were collected from mice immediately from the shipping box upon receipt, and again after 2, 6 and 12 weeks in the new facility. Substantial variation in bacterial proportional abundance was observed among mice from each vendor at the time of receipt, but shared microbes accounted for most sequence reads. Vendor-specific microbes were generally of low abundance. Microbial profiles of mice from all vendors exhibited shifts over time, highlighting the importance of environmental conditions on microbial dynamics. Our results emphasize the need for continued efforts to account for sources of variation in animal models and understand how they contribute to experimental reproducibility.


Subject(s)
Gastrointestinal Microbiome , Animals , Bacteria , Feces , Mice , Mice, Inbred C57BL , Reproducibility of Results
3.
Comp Med ; 67(4): 335-343, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28830580

ABSTRACT

Segmented filamentous bacterium (SFB) a gram-positive, anaerobic, and intestinal commensal organism directly influences the development of Th17 helper cells in the small intestine of mice. In NOD mice, SFB colonization interferes with the development of type 1 diabetes (T1D), a T-cell-mediated autoimmune disease, suggesting that SFB may influence Th17 cells to inhibit Th1 populations associated with the anti-ß-cell immune response. This effect is a serious concern for investigators who use NOD mice for diabetes research because the expected incidence of disease decreases markedly when they are colonized by SFB. A room housing mice for T1D studies at The Jackson Laboratory was determined by fecal PCR testing to have widespread SFB colonization of multiple NOD strains after a steady decline in the incidence of T1D was noted. Rederivation of all NOD-related mouse strains was not feasible; therefore an alternative treatment using antibiotics to eliminate SFB from colonized mice was undertaken. After antibiotic treatment, soiled bedding from NOD mouse strains housed in SFB-free high-health-status production barrier rooms was used to reintroduce the gastrointestinal microbiota. Over the past 16 mo since treating the mice and disinfecting the mouse room, regular PCR testing has shown that no additional SFB colonization of mice has occurred, and the expected incidence of T1D has been reestablished in the offspring of treated mice.


Subject(s)
Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Diabetes Mellitus, Type 1/microbiology , Gastrointestinal Microbiome/drug effects , Gram-Positive Bacteria/drug effects , Gram-Positive Bacterial Infections/veterinary , Intestines/drug effects , Animal Husbandry/methods , Animals , Decontamination/methods , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Disease Models, Animal , Environmental Monitoring/methods , Feces/microbiology , Genetic Predisposition to Disease , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/immunology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Host-Pathogen Interactions , Intestines/immunology , Intestines/microbiology , Mice, Inbred NOD , Phenotype , Th1 Cells/immunology , Th1 Cells/microbiology , Th17 Cells/immunology , Th17 Cells/microbiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...