Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 21(1): 013126, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21456840

ABSTRACT

Most complex technological networks are defined in such a way that their global properties are manifested at a dynamical level. An example of this is when internal dynamical processes are constrained to predefined pathways, without the possibility of alternate routes. For instance, large corporation software networks, where several flow processes take place, are typically routed along specific paths. In this work, we propose a model to describe the global characteristics of this kind of processes, where the dynamics depends on the state of the nodes, represented by two possibilities: responsive or blocked. We present numerical simulations that show rich global behavior with unexpected emerging properties. In particular, we show that two different regimes appear as a function of the total network load. Each regime is characterized by developing either a unimodal or a bimodal distribution for the density of responsive nodes, directly related to global efficiency. We provide a detailed explanation for the main characteristics of our results as well as an analysis of the implications for real technological systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...