Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 457: 140026, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38924909

ABSTRACT

Despite the beneficial effects of antibiotics such as chloramphenicol (CAP), they exert some destructive impacts on human health. We designed an electrochemical sensor based on reduced graphene oxide (rGO)/Au/Co2CuS4 nanohybrid for determination of CAP in food and biological samples. The Co2CuS4 was synthesized from binuclear metal-organic framework (CoCu-BDC) through a two-step process. Nanohybrid was characterized by X-ray photoelectron spectroscopy and transmission electron microscopy. The rGO/Au/Co2CuS4 provides more active sites and good electrical conductivity to reduce charge transfer resistance and improve the electrocatalytic activity for determination of CAP. The prepared sensor has a wide linear range from 7 to 141 nM with a limit of detection of 2.5 nM and a limit of quantification of 21.92 nM. It also provided high selectivity and repeatability with a relative standard deviation of 2.6%. Stability studies showed that the electrode has acceptable performance with efficiency of 95% after 33 days.

2.
Talanta ; 269: 125450, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38042141

ABSTRACT

Bisphenol A (BPA) is one of key raw materials used in the production of epoxy resins and plastics, which has toxicological effects on humans by disrupting cell functions through a variety of cell signaling pathways. Therefore, it is of great significance to develop a simple, rapid, and accurate BPA detection method in real water samples. In this study, a ratiometric fluorescence method based on yellow-emitting surface-functionalized polymer dots (PFBT@L Pdots) and blue-emitting carbon dots (Cdots) was described for the detection of BPA. Pdots as the detecting part were synthesized by using highly fluorescent hydrophobic Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT) polymer and (R)-5,11,17,23-Tetra-tert-butyl-25,27-bis[(diphenylphosphinoyl)methoxy]-26-(3-oxabutyloxy)-28-[(1-phenylethyl)- carbamoylmethoxy]calix [4]arene (L) functionalizing ligand, and Cdots as internal reference were prepared by hydrothermal treatment of citric acid and urea. In the presence of BPA, chemical binding of the phosphorus atoms of nearby PFBT@L Pdots with BPA hydroxyl functional groups led to the aggregation of the PFBT@L Pdots aggregation and quenching their yellow emission, but the blue emission of Cdots, on the other hand, remained stable. The proposed PFBT@L Pdots probe was successfully applied for the detection of BPA in real water samples, and the results were in good agreement with those obtained by HPLC-FLD. To the best of our knowledge, this is the first report that the calixarene has been utilized to modify Pdots.

SELECTION OF CITATIONS
SEARCH DETAIL
...