Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 259: 116321, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38749287

ABSTRACT

Milk fever is a metabolic disorder that predominantly affects dairy animals during the periparturient period and within four weeks of calving. Milk fever is primarily attributed to a decrease in the animal's serum Ca2+ levels. Clinical milk fever occurs when Ca2+ concentration drops below 1.5 mM (6 mg/dL). Without prompt intervention, clinical milk fever leads to noticeable physical symptoms and health complications including coma and fatality. Subclinical milk fever is characterized by Ca2+ levels between 1.5 and 2.12 mM (6-8.48 mg/dL). Approximately 50% of multiparous dairy cows suffer from subclinical milk fever during the transition to lactation. The economic impact of milk fever, both direct and indirect, is substantial, posing challenges for farmers. To address this issue, we developed a low-cost electrochemical sensor that can measure bovine serum calcium levels on-site, providing an opportunity for early detection of subclinical and clinical milk fever and early intervention. This calcium sensor is a scalable solid contact ion sensing platform that incorporates a polymeric calcium-selective membrane and ionic liquid-based reference membrane into laser-induced graphene (LIG) electrodes. Our sensing platform demonstrates a sensitivity close to the theoretical Nernstian value (29.6 mV/dec) with a limit of detection of 15.6 µM and selectivity against the species in bovine serum. Moreover, our sensor can detect Ca2+ in bovine serum with 91% recovery.


Subject(s)
Biosensing Techniques , Calcium , Dairying , Electrochemical Techniques , Animals , Cattle , Biosensing Techniques/instrumentation , Biosensing Techniques/economics , Female , Electrochemical Techniques/economics , Electrochemical Techniques/instrumentation , Calcium/blood , Dairying/instrumentation , Dairying/economics , Parturient Paresis/diagnosis , Parturient Paresis/blood , Equipment Design , Graphite/chemistry , Limit of Detection , Cattle Diseases/diagnosis , Cattle Diseases/blood , Cattle Diseases/economics
2.
Small ; : e2311745, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587168

ABSTRACT

Choline is an essential micronutrient for infants' brain development and health. To ensure that infants receive the needed daily dose of choline, the U.S. Food and Drug Administration (FDA) has set requirements for choline levels in commercialized infant formulas. Unfortunately, not all families can access well-regulated formulas, leading to potential inadequacies in choline intake. Economic constraints or difficulties in obtaining formulas, exacerbated by situations like COVID-19, prompt families to stretch formulas. Accurate measurement of choline in infant formulas becomes imperative to guarantee that infants receive the necessary nutritional support. Yet, accessible tools for this purpose are lacking. An innovative integrated sensor for the periodic observation of choline (SPOOC) designed for at-home quantification of choline in infants' formulas and milk powders is reported. This system is composed of a choline potentiometric sensor and ionic-liquid reference electrode developed on laser-induced graphene (LIG) and integrated into a spoon-like device. SPOOC includes a micro-potentiometer that conducts the measurements and transmits results wirelessly to parents' mobile devices. SPOOC demonstrated rapid and accurate assessment of choline levels directly in pre-consuming infant formulas without any sample treatment. This work empowers parents with a user-friendly tool for choline monitoring promoting informed nutritional decision-making in the care of infants.

3.
Adv Healthc Mater ; 13(18): e2304122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38563494

ABSTRACT

This work presents LiFT (a lithium fiber-based test), a low-cost electrochemical sensor that can measure lithium in human saliva and urine with FDA-required accuracy. Lithium is used for the treatment of bipolar disorder, and has a narrow therapeutic window. Close monitoring of lithium concentration in biofluids and adjustment of drug dosage can minimize the devastating side effects. LiFT is an inexpensive, yet accurate and simple-to-operate lithium sensor for frequent at-home testing for early identification of lithium toxicity. The low cost and high accuracy of LiFT are enabled through an innovative design and the use of ubiquitous materials such as yarn and carbon black for fabrication. LiFT measures Li+ through potentiometric recognition using a lithium selective sensing membrane that is deposited on the ink-coated yarn. A detection limit of 0.97 µM is obtained with a sensitivity of 59.07±1.25 mV/decade for the Li+ sensor in deionized water. Moreover, the sodium correction extended LiFT's linear range in urine and saliva to 0.5 mM. The LiFT platform sends the test results to the patient's smartphone, which subsequently can be shared with the patient's healthcare provider to expedite diagnosis and prevention of acute lithium toxicity.


Subject(s)
Bipolar Disorder , Lithium , Saliva , Humans , Bipolar Disorder/drug therapy , Bipolar Disorder/urine , Lithium/chemistry , Saliva/chemistry , Saliva/metabolism , Electrochemical Techniques/methods
4.
ACS Sens ; 8(10): 3943-3951, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37734027

ABSTRACT

Citalopram (CTLP) is one of the most common antidepressants prescribed worldwide. It has a narrow therapeutic window and can cause severe toxicity and mortality if the dosage exceeds the safe level. Reports indicated that at-home monitoring of citalopram dosage considerably benefits the patients, yet there are no devices capable of such measurement of citalopram in biofluids. This work presents an affordable citalopram test for at-home and point-of-care monitoring of citalopram levels in urine, ensuring a safe and effective drug compliance. Our platform consists of a citalopram-selective yarn-based electrode (CTLP-SYE) that uses polymeric sensing membranes to provide valuable information about drug concentration in urine. CTLP-SYE is noninvasive and has a response time of fewer than 10 s. The fabricated electrode showed near-Nernstian behavior with a 52.3 mV/decade slope in citalopram hydrobromide solutions ranging from 0.5 µM to 1.0 mM, with a detection limit of 0.2 µM. Results also indicated that neither interfering ions nor pH affects electrode performance. We showed that CTLP-SYE could accurately and reproducibly measure citalopram in human urine (RSD 2.0 to 3.2%, error <12%) at clinically relevant concentrations. This work paves the way for the personalized treatment of depression and accessible companion diagnostics to improve treatment efficacy and safety.


Subject(s)
Citalopram , Depression , Humans , Citalopram/therapeutic use , Depression/diagnosis , Depression/drug therapy , Precision Medicine , Antidepressive Agents/therapeutic use , Electrodes
5.
Bioengineering (Basel) ; 10(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37370586

ABSTRACT

Acetylcholine (ACh) is involved in memory and learning and has implications in neurodegenerative diseases; it is therefore important to study the dynamics of ACh in the brain. This work creates a flexible solid-contact potentiometric sensor for in vitro and in vivo recording of ACh in the brain and tissue homogenate. We fabricate this sensor using a 250 µm diameter cotton yarn coated with a flexible conductive ink and an ACh sensing membrane that contains a calix[4]arene ionophore. The exposed ion-to-electron transducer was sealed with a 2.5 µm thick Parylene C coating to maintain the flexibility of the sensor. The resulting diameter of the flexible ACh sensing thread (FAST) was 400 µm. The FAST showed a linear response range from 1.0 µM to 10.0 mM in deionized water, with a near-Nernstian slope of 56.11 mV/decade and a limit of detection of 2.6 µM. In artificial cerebrospinal fluid, the limit of detection increased to 20 µM due to the background signal of ionic content of the cerebrospinal fluid. The FAST showed a signal stability of 226 µV/h over 24 h. We show that FAST can measure ACh dynamics in sheep brain tissue and sheep brain homogenate after ACh spiking. FAST is the first flexible electrochemical sensor for monitoring ACh dynamics in the brain.

6.
Heliyon ; 9(4): e15223, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37101647

ABSTRACT

The detection of pharmaceutical compounds in extremely low concentrations remains a challenge despite recent advancements in electrochemical sensing. In this study, a green hydrothermally synthesized nickel hydroxide-graphene hybrid material was used for the point-of-care determination of the antibiotic doxycycline (DOXY), which is a promising treatment for COVID-19 and other infections. The electrochemical sensor, based on a screen-printed electrode modified with the hybrid material, was able to detect DOXY in the range of 5.1 × 10-8 to 1.0 × 10-4 M, with a low detection limit of 9.6 × 10-9 M. This approach paves the way for eco-friendly and sustainable methods of nanomaterial synthesis for electrochemical analyses, particularly in point-of-care drug monitoring, and has the potential to improve access to testing platforms.

7.
Biosensors (Basel) ; 13(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36831970

ABSTRACT

The COVID-19 pandemic revealed a pressing need for the development of sensitive and low-cost point-of-care sensors for disease diagnosis. The current standard of care for COVID-19 is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). This method is sensitive, but takes time, effort, and requires specialized equipment and reagents to be performed correctly. This make it unsuitable for widespread, rapid testing and causes poor individual and policy decision-making. Rapid antigen tests (RATs) are a widely used alternative that provide results quickly but have low sensitivity and are prone to false negatives, particularly in cases with lower viral burden. Electrochemical sensors have shown much promise in filling this technology gap, and impedance spectroscopy specifically has exciting potential in rapid screening of COVID-19. Due to the data-rich nature of impedance measurements performed at different frequencies, this method lends itself to machine-leaning (ML) algorithms for further data processing. This review summarizes the current state of impedance spectroscopy-based point-of-care sensors for the detection of the SARS-CoV-2 virus. This article also suggests future directions to address the technology's current limitations to move forward in this current pandemic and prepare for future outbreaks.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pandemics , COVID-19 Testing , Clinical Laboratory Techniques/methods , Sensitivity and Specificity
8.
Sensors (Basel) ; 23(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36850490

ABSTRACT

Bacterial vaginosis (BV) is the most frequently occurring vaginal infection worldwide, yet it remains significantly underdiagnosed as a majority of patients are asymptomatic. Untreated BV poses a serious threat as it increases one's risk of STI acquisition, pregnancy complications, and infertility. We aim to minimize these risks by creating a low-cost disposable sensor for at-home BV diagnosis. A clinical diagnosis of BV is most commonly made according to the Amsel criteria. In this method, a fish-like odor, caused by increased levels of trimethylamine (TMA) in vaginal fluid, is used as a key diagnostic. This paper outlines the development of a Home-Based Electrochemical Rapid Sensor (HERS), capable of detecting TMA in simulated vaginal fluid (sVF). Instead of odor-based detection of volatilized TMA, we identify TMA in trimethylammonium form by utilizing HERS and a potentiometric readout. We fabricated the ion selective electrode using a carbon-black-coated cotton string and a TMA-selective membrane consisting of calix[4]arene and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. When paired with a standard reference electrode, our device was able to quantify TMA concentration in deionized (DI) water, as well as sVF samples at multiple pH levels with a clinically relevant limit of detection (8.66 µM, and theoretically expected Nernstian slope of 55.14 mV/decade).


Subject(s)
Body Fluids , Vaginosis, Bacterial , Female , Animals , Pregnancy , Humans , Vaginosis, Bacterial/diagnosis , Borates , Flowers
9.
J Am Chem Soc ; 143(4): 2156-2163, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33480255

ABSTRACT

This paper addresses the mechanism for rectification in molecular tunneling junctions based on alkanethiolates terminated by a bipyridine group complexed with a metal ion, that is, having the structure AuTS-S(CH2)11BIPY-MCl2 (where M = Co or Cu) with a eutectic indium-gallium alloy top contact (EGaIn, 75.5% Ga 24.5% In). Here, AuTS-S(CH2)11BIPY is a self-assembled monolayer (SAM) of an alkanethiolate with 4-methyl-2,2'-bipyridine (BIPY) head groups, on template-stripped gold (AuTS). When the SAM is exposed to cobalt(II) chloride, SAMs of the form AuTS-S(CH2)11BIPY-CoCl2 rectify current with a rectification ratio of r+ = 82.0 at ±1.0 V. The rectification, however, disappears (r+ = 1.0) when the SAM is exposed to copper(II) chloride instead of cobalt. We draw the following conclusions from our experimental results: (i) AuTS-S(CH2)11BIPY-CoCl2 junctions rectify current because only at positive bias (+1.0 V) is there an accessible molecular orbital (the LUMO) on the BIPY-CoCl2 moiety, while at negative bias (-1.0 V), neither the energy level of the HOMO or the LUMO lies between the Fermi levels of the electrodes. (ii) AuTS-S(CH2)11BIPY-CuCl2 junctions do not rectify current because there is an accessible molecular orbital on the BIPY-CuCl2 moiety at both negative and positive bias (the HOMO is accessible at negative bias, and the LUMO is accessible at positive bias). The difference in accessibility of the HOMO levels at -1.0 V causes charge transfer-at negative bias-to take place via Fowler-Nordheim tunneling in BIPY-CoCl2 junctions, and via direct tunneling in BIPY-CuCl2 junctions. This difference in tunneling mechanism at negative bias is the origin of the difference in rectification ratio between BIPY-CoCl2 and BIPY-CuCl2 junctions.

10.
ACS Omega ; 5(23): 13621-13629, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32566827

ABSTRACT

Because of their low polarity and polarizability, fluorous sensing membranes are both hydrophobic and lipophobic and exhibit very high ion selectivities. Here, we report on a new fluorous-membrane ion-selective electrode (ISE) with a wide sensing range centered around physiologically relevant pH values. The fluorophilic tris[perfluoro(octyl)butyl]amine (N[(CH2)4Rf8]3) was synthesized and tested as a new H+ ionophore using a redesigned electrode body that provides excellent mechanical sealing and much improved measurement reliability. In a challenging 1 M KCl background, these fluorous-phase ISEs exhibit a sensing range from pH 2.2 to 11.2, which is one of the widest working ranges reported to date for ionophore-based H+ ISEs. High selectivities against common interfering ions such as K+, Na+, and Ca2+ were determined (selectivity coefficients: logK H, K pot = - 11.6; logK H, Na pot = - 12.4; logK H, Ca pot < - 10.2). The use of the N[(CH2)4Rf8]3 ionophore with its -(CH2)4- spacers separating the amino group from the strongly electron-withdrawing perfluorooctyl groups improved the potentiometric selectivity as compared to the less basic tris[perfluoro(octyl)propyl]amine ionophore. The use of N[(CH2)4Rf8]3 also made the ISE less prone to counter anion failure (i.e., Donnan failure) at low pH than the use of tris[perfluoro(octyl)pentyl]amine with its longer -(CH2)5- spacers, which more effectively shield the amino center from the perfluorooctyl groups. In addition, we exposed both conventional plasticized PVC-phase pH ISEs and fluorous-phase pH ISEs to 10% serum for 5 days. Results show that the PVC-phase ISEs lost selectivity while their fluorous-phase counterparts did not.

11.
ACS Omega ; 4(1): 1068-1076, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459383

ABSTRACT

In situ methods for the sequestration of perfluorooctyl-1-sulfonate (PFOS) that are based on PFOS binding to polyquaternium polymers were reported previously, providing an approach to immobilize and concentrate PFOS in situ. To apply these methods in real life, the concentrations of polymers that permit efficient sequestration must be determined. This is only possible if the stoichiometry and strength of PFOS binding to polyquaternium polymers are known. Here, we report on the use of fluorous-phase ion-selective electrodes (ISEs) to determine the equilibrium constants characterizing binding of PFOS to poly(dimethylamine-co-epichlorohydrin) and poly(diallyldimethylammonium) in simulated groundwater and in soil suspensions. We introduce a new method to interpret potentiometric data for surfactant binding to the charged repeat unit of these polyions by combining a 1:1 binding model with the ISE response model. This allows for straightforward prediction and fitting of experimental potentiometric data in one step. Data fit the binding model for poly(diallyldimethylammonium) and poly(dimethylamine-co-epichlorohydrin) chloride in soil-free conditions and in the presence of soil from Tinker Air Force Base. When the total PFOS concentration in a soil system is known, knowledge of these PFOS binding characteristics permits quantitative prediction of the mobile (free) and polymer-bound fractions of PFOS as a function of the concentrations of the polyquaternium polymer. Because the technique reported here is based on the selective in situ determination of the free ionic surfactant, we expect it to be similarly useful for determining the sequestration of a variety of other ionic pollutants.

12.
Biosens Bioelectron ; 126: 115-121, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30396018

ABSTRACT

Bilirubin is predominantly formed in the liver as a result of breakdown of hemoglobin. Knowing the concentration of bilirubin in serum is important in evaluating the health of the liver, and for the diagnosis of hyperbilirubinemia (a condition that afflicts approximately 60% of full-term and 80% of pre-term newborns). This paper describes the design and fabrication of a potentiometric sensor for the determination of free bilirubin in serum. The sensor has a polymeric ion-selective membrane, and selectively measures free ionic bilirubin ("unbound" bilirubin - i.e., bilirubin not complexed to albumin or other complexing agents), in the presence of other anions - chloride, phosphate, pyruvate, deoxycholate, and lactate - also present in serum. The linear response range of the sensor (1.0 mM to 0.10 µM bilirubin, measured in a sodium phosphate buffer with pH 8.6) covers the clinically-relevant concentration of bilirubin in serum (5-500 µM). Free bilirubin could be detected in human blood serum with this potentiometric sensor. The components of the potentiometric bilirubin sensor were embedded in a paper-based device to provide a sensor that is disposable and easy to use, and thus is suitable for applications at the point-of-care. The paper-based potentiometric bilirubin sensor exhibited a response range of 5.0-0.10 mM (sufficient to cover the clinically-relevant concentration of bilirubin in serum). Only 15 µL of sample is required for measurement of the concentration of free bilirubin, and the analysis can be performed in less than two minutes.


Subject(s)
Bilirubin/blood , Biosensing Techniques/instrumentation , Paper , Potentiometry/instrumentation , Electrodes , Equipment Design , Humans , Hyperbilirubinemia/blood , Hyperbilirubinemia/diagnosis , Infant, Newborn , Limit of Detection , Male , Point-of-Care Systems
13.
ACS Sens ; 3(12): 2581-2589, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30398333

ABSTRACT

The neurotransmitter acetylcholine (ACh) plays a key role in the pathophysiology of brain disorders such as Alzheimer's disease. Understanding the dynamics of ACh concentration changes and kinetics of ACh degradation in the living brain is crucial to unravel the pathophysiology of such diseases and the rational design of therapeutics. In this work, an electrochemical sensor capable of dynamic, label-free, selective, and in situ detection of ACh in a range of 1 nM to 1 mM (with temporal resolution of less than one second) was developed. The sensor was employed for the direct detection of ACh in artificial cerebrospinal fluid and rat brain homogenate, without any prior separation steps. A potentiometric receptor-doped ion-selective electrode (ISE) with selectivity for ACh was designed by taking advantage of the positive charge of ACh. The dynamic range, limit of detection (LOD), and the selectivity of the sensor were optimized stepwise by (i) screening of hydrophobic biomimetic calixarenes to identify receptors that strongly bind to ACh based on shape-selective multitopic recognition, (ii) doping of the ISE sensing membrane with an ACh-binding hydrophobic calixarene to enable selective detection of ACh in complex matrices, (iii) utilizing a hydrophilic calixarene in the inner filling solution of the ISE to buffer the concentration of ACh and, thereby, lower the LOD of the sensor, and (iv) introducing a surface treatment step prior to the measurement by placing the sensor for ∼1 min in a solution of a hydrophilic calixarene to lower the LOD of the sensor even further.


Subject(s)
Acetylcholine/cerebrospinal fluid , Neurotransmitter Agents/cerebrospinal fluid , Potentiometry/methods , Acetylcholine/chemistry , Animals , Biomimetic Materials/chemistry , Brain Chemistry , Calixarenes/chemistry , Electrodes , Hydrophobic and Hydrophilic Interactions , Ionophores/chemistry , Limit of Detection , Male , Neurotransmitter Agents/chemistry , Potentiometry/instrumentation , Rats, Wistar
14.
Ann N Y Acad Sci ; 1430(1): 3-43, 2018 10.
Article in English | MEDLINE | ID: mdl-30151974

ABSTRACT

Thiamine is an essential micronutrient that plays a key role in energy metabolism. Many populations worldwide may be at risk of clinical or subclinical thiamine deficiencies, due to famine, reliance on staple crops with low thiamine content, or food preparation practices, such as milling grains and washing milled rice. Clinical manifestations of thiamine deficiency are variable; this, along with the lack of a readily accessible and widely agreed upon biomarker of thiamine status, complicates efforts to diagnose thiamine deficiency and assess its global prevalence. Strategies to identify regions at risk of thiamine deficiency through proxy measures, such as analysis of food balance sheet data and month-specific infant mortality rates, may be valuable for understanding the scope of thiamine deficiency. Urgent public health responses are warranted in high-risk regions, considering the contribution of thiamine deficiency to infant mortality and research suggesting that even subclinical thiamine deficiency in childhood may have lifelong neurodevelopmental consequences. Food fortification and maternal and/or infant thiamine supplementation have proven effective in raising thiamine status and reducing the incidence of infantile beriberi in regions where thiamine deficiency is prevalent, but trial data are limited. Efforts to determine culturally and environmentally appropriate food vehicles for thiamine fortification are ongoing.


Subject(s)
Dietary Supplements , Food, Fortified , Public Health , Thiamine Deficiency/epidemiology , Global Health , Humans , Prevalence , Risk Factors , Thiamine Deficiency/diagnosis , Thiamine Deficiency/therapy
15.
Lab Chip ; 18(15): 2279-2290, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29987296

ABSTRACT

Potentiometric sensing of ions with ion-selective electrodes (ISEs) is a powerful technique for selective and sensitive measurement of ions in complex matrices. The application of ISEs is generally limited to laboratory settings, because most commercially available ISEs and reference electrodes are large, delicate, and expensive, and are not suitable for point-of-use or point-of-care measurements. This work utilizes cotton thread as a substrate for fabrication of robust and miniaturized ISEs that are suitable for point-of-care or point-of-use applications. Thread-based ISEs selective for Cl-, K+, Na+, and Ca2+ were developed. The cation-selective ISEs were fabricated by coating the thread with a surfactant-free conductive ink (made of carbon black) and then coating the tip of the conductive thread with the ion-selective membrane. The Cl- ISE was fabricated by coating the thread with an Ag/AgCl ink. These sensors exhibited slopes (of electrical potential vs. log concentration of target ion), close to the theoretically-expected values, over four orders of magnitude in concentrations of ions. Because thread is mechanically strong, the thread-based electrodes can be used in multiple-use applications as well as single-use applications. Multiple thread-based sensors can be easily bundled together to fabricate a customized sensor for multiplexed ion-sensing. These electrodes require volumes of sample as low as 200 µL. The application of thread-based ISEs is demonstrated in the analysis of ions in soil, food, and dietary supplements (Cl- in soil/water slurry, K+ and Na+ in coconut water, and Ca2+ in a calcium supplement), and in detection of physiological electrolytes (K+ and Na+ in blood serum and urine, with sufficient accuracy for clinical diagnostics).

16.
J Am Chem Soc ; 140(32): 10221-10232, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30035540

ABSTRACT

This work describes the autocatalytic copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between tripropargylamine and 2-azidoethanol in the presence of Cu(II) salts. The product of this reaction, tris-(hydroxyethyltriazolylmethyl)amine (N(C3N3)3), accelerates the cycloaddition reaction (and thus its own production) by two mechanisms: (i) by coordinating Cu(II) and promoting its reduction to Cu(I) and (ii) by enhancing the catalytic reactivity of Cu(I) in the cycloaddition step. Because of the cooperation of these two processes, a rate enhancement of >400× is observed over the course of the reaction. The kinetic profile of the autocatalysis can be controlled by using different azides and alkynes or ligands (e.g., ammonia) for Cu(II). When carried out in a layer of 1% agarose gel, and initiated by ascorbic acid, this autocatalytic reaction generates an autocatalytic front. This system is prototypical of autocatalytic reactions where the formation of a product, which acts as a ligand for a catalytic metal ion, enhances the production and activity of the catalyst.

17.
Anal Chem ; 90(10): 6240-6246, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29658268

ABSTRACT

This paper describes the design and characterization of an open-source "universal wireless electrochemical detector" (UWED). This detector interfaces with a smartphone (or a tablet) using "Bluetooth Low Energy" protocol; the smartphone provides (i) a user interface for receiving the experimental parameters from the user and visualizing the result in real time, and (ii) a proxy for storing, processing, and transmitting the data and experimental protocols. This approach simplifies the design, and decreases both the size and the cost of the hardware; it also makes the UWED adaptable to different types of analyses by simple modification of the software. The UWED can perform the most common electroanalytical techniques of potentiometry, chronoamperometry, cyclic voltammetry, and square wave voltammetry, with results closely comparable to benchtop commercial potentiostats. Although the operating ranges of electrical current and voltage of the UWED (±1.5 V, ±180 µA) are more limited than most benchtop commercial potentiostats, its functional range is sufficient for most electrochemical analyses in aqueous solutions. Because the UWED is simple, small in size, assembled from inexpensive components, and completely wireless, it offers new opportunities for the development of affordable diagnostics, sensors, and wearable devices.

18.
Anal Chem ; 88(17): 8706-13, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27464837

ABSTRACT

In many commercially available and in-house-prepared reference electrodes, nanoporous glass frits (often of the brand named Vycor) contain the electrolyte solution that forms a salt bridge between the sample and the reference solution. Recently, we showed that in samples with low ionic strength, the half-cell potentials of reference electrodes comprising nanoporous Vycor frits are affected by the sample and can shift in response to the sample composition by more than 50 mV (which can cause up to 900% error in potentiometric measurements). It was confirmed that the large potential variations result from electrostatic screening of ion transfer through the frit due to the negatively charged surfaces of the glass nanopores. Since the commercial production of porous Vycor glass was recently discontinued, new materials have been used lately as porous frits in commercially available reference electrodes, namely frits made of Teflon, polyethylene, or one of two porous glasses sold under the brand names CoralPor and Electro-porous KT. In this work, we studied the effect of the frit characteristics on the performance of reference electrodes, and show that the unwanted changes in the reference potential are not unique to electrodes with Vycor frits. Increasing the pore size in the glass frits from the <10 nm into the 1 µm range or switching to polymeric frits with pores in the 1 to 10 µm range nearly eliminates the potential variations caused by electrostatic screening of ion transport through the frit pores. Unfortunately, bigger frit pores result in larger flow rates of the reference solution through the pores, which can result in the contamination of test solutions.

19.
ACS Appl Mater Interfaces ; 8(5): 3396-406, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26771378

ABSTRACT

Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.

20.
Sci Total Environ ; 537: 453-61, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26284896

ABSTRACT

The widespread application of silver in consumer products and the resulting contamination of natural environments with silver raise questions about the toxicity of Ag(+) in the ecosystem. Natural organic matter, NOM, which is abundant in water supplies, soil, and sediments, can form stable complexes with Ag(+), altering its bioavailability and toxicity. Herein, the extent and kinetics of Ag(+) binding to NOM, matrix effects on Ag(+) binding to NOM, and the effect of NOM on Ag(+) toxicity to Shewanella oneidensis MR-1 (assessed by the BacLight viability assay) were quantitatively studied with fluorous-phase Ag(+) ion-selective electrodes (ISEs). Our findings show fast kinetics of Ag(+) and NOM binding, weak Ag(+) binding for Suwannee River humic acid, fulvic acid, and aquatic NOM, and stronger Ag(+) binding for Pony Lake fulvic acid and Pahokee Peat humic acid. We quantified the effects of matrix components and pH on Ag(+) binding to NOM, showing that the extent of binding greatly depends on the environmental conditions. The effect of NOM on the toxicity of Ag(+) does not correlate with the extent of Ag(+) binding to NOM, and other forms of silver, such as Ag(+) reduced by NOM, are critical for understanding the effect of NOM on Ag(+) toxicity. This work also shows that fluorous-phase Ag(+) ISEs are effective tools for studying Ag(+) binding to NOM because they can be used in a time-resolved manner to monitor the activity of Ag(+) in situ with high selectivity and without the need for extensive sample preparation.


Subject(s)
Silver/toxicity , Benzopyrans , Humic Substances , Hydrogen-Ion Concentration , Ion-Selective Electrodes , Kinetics , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...