Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36429286

ABSTRACT

Plant-based proteins are gaining in attraction compared with animal-based proteins due to their superior ethical profiles, growing concerns on the part of various organizations about animal health and welfare, and increased global greenhouse-gas emissions in meat production. In this study, the response surface methodology (RSM) using a Box-Behnken design (BBD) was applied to optimize the ultrasound-assisted alkaline extraction of cherimoya-seed proteins as valuable by-products. The effects of three pH, temperature, and time factors on the protein-extraction yield and protein content were investigated. The pH at 10.5 and temperature of 41.8 °C for 26.1 min were considered the optimal ultrasound-assisted alkaline-extraction conditions since they provided the maximum extraction yield (17.3%) and protein content (65.6%). An established extraction technique was employed to enhance the cherimoya-seed protein yield, purity, and functional properties. A thermogravimetric analysis (TGA) of the samples showed that the ultrasound-assisted alkaline extraction improved the thermal stability of the protein concentrate.

2.
Foods ; 10(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34574325

ABSTRACT

In the present study, Lactobacillus acidophilus LA-5 was microencapsulated in sodium alginate, followed by fish gelatin coating (0.5, 1.5, and 3%). The survival of L. acidophilus in bread before and after encapsulation in alginate/fish gelatin during the baking and 7-day storage was investigated. Moreover, the effect of alginate/fish gelatin-encapsulated L. acidophilus on the technological properties of bread (hardness, staling rate, water content, oven spring, specific volume, and internal texture structure) was evaluated. Compared with control (free bacteria), encapsulated L. acidophilus in alginate/fish gelatin showed an increase in the viability of bread until 2.49 and 3.07 log CFU/g during baking and storage, respectively. Good viability of (106 CFU/g) for probiotic in encapsulated L. acidophilus in alginate/fish gelatin (1.5 and 3%, respectively) after 4-day storage was achieved. Fish gelatin as a second-layer carrier of the bacteria had a positive effect on improving the technical quality of bread. Furthermore, the staling rate of bread containing encapsulated L. acidophilus alginate/fish gelatin 0.5, 1.5, and 3% decreased by 19.5, 25.8, and 31.7%, respectively. Overall, the findings suggested encapsulation of L. acidophilus in alginate/fish gelatin capsule had great potential to improve probiotic bacteria's survival during baking and storage and to serve as an effective bread enhancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...