Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21180, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040898

ABSTRACT

Enzyme therapy can be an appropriate treatment option for celiac disease (CeD). Here, we developed Bromelain-Loaded Nanocomposites (BLNCs) to improve the stability and retention of bromelain enzyme activity. After the characterization of BLNCs, the cytotoxicity of BLNCs was determined on the Caco-2 cell line. The effect of BLNCs on gliadin degradation and the production of pro-inflammatory cytokines and anti-inflammatory molecules in peripheral blood mononuclear cells (PBMCs) obtained from celiac patients were assessed. Furthermore, the expression of CXCR3 and CCR5 genes was measured in CaCo-2 cells treated with gliadin, gliadin-digested with BLNCs, and bromelain. Our study demonstrated that the Bromelain entrapment efficiency in these nanoparticles was acceptable, and BLNCs have no toxic effect on cells. SDS-PAGE confirmed the digestion effect of bromelain released from nanocomposites. When Caco-2 cells were treated with gliadin digested by free bromelain and BLNCs, the expression of CXCR3 and CCR5 genes was significantly decreased. PBMCs of celiac patients treated with Bromelain and BLNCs decreased inflammatory cytokines (IL-1ß, IL-6, TNF-α, and IFN-γ) production compared to untreated PBMCs. This treatment also increased IL-10 and CTLA-4 in PBMCs of CeD patients. According to the promising results of this study, we can hope for the therapeutic potential of BLNCs for CeD.


Subject(s)
Celiac Disease , Gliadin , Humans , Caco-2 Cells , Gliadin/metabolism , Leukocytes, Mononuclear/metabolism , Bromelains/pharmacology , Cytokines/metabolism , Celiac Disease/drug therapy , Celiac Disease/metabolism
2.
Amino Acids ; 55(11): 1601-1619, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37803248

ABSTRACT

Enzyme therapy for celiac disease (CeD), which digests gliadin into non-immunogenic and non-toxic peptides, can be an appropriate treatment option for CeD. Here, we have investigated the effectiveness of bromelain and ficin on gliadin digestion using in vitro, such as SDS-PAGE, HPLC, and circular dichroism (CD). Furthermore, the cytotoxicity of gliadin and 19-mer peptide before and after digestion with these enzymes was evaluated using the MTT assay in the Caco-2 cell line. Finally, we examined the effect of these treatments along with Larazotide Acetate on the expression of genes involved in cell-tight junctions, such as Occludin, Claudin 3, tight junction protein-1, and Zonulin in the Caco-2 cell line. Our study demonstrated bromelain and ficin digestion effects on the commercial and wheat-extracted gliadin by SDS-PAGE, HPLC, and CD. Also, the cytotoxicity results on Caco-2 showed that toxicity of the gliadin and synthetic 19-mer peptide was decreased by adding bromelain and ficin. Furthermore, the proteolytic effects of bromelain and ficin on gliadin indicated the expression of genes involved in cell-tight junctions was improved. This study confirms that bromelain and ficin mixture could be effective in improving the symptoms of CeD.


Subject(s)
Celiac Disease , Gliadin , Humans , Caco-2 Cells , Gliadin/pharmacology , Gliadin/metabolism , Tight Junctions , Ficain , Bromelains/pharmacology , Peptides/pharmacology
3.
Int J Pept Res Ther ; 29(1): 5, 2023.
Article in English | MEDLINE | ID: mdl-36466430

ABSTRACT

In spite of existing cases of severe viral infections with a high mortality rate, there are not enough antiviral drugs and vaccines available for the prevention and treatment of such diseases. In addition, the increasing reports of the emergence of viral epidemics highlight, the need for novel molecules with antiviral potential. Antimicrobial peptides (AMPs) with antiviral activity or antiviral peptides (AVPs) have turned into a research hotspot and already show tremendous potential to become pharmaceutically available antiviral medicines. AMPs, a diverse group of bioactive peptides act as a part of our first line of defense against pathogen inactivation. Although most of the currently reported AMPs are either antibacterial or antifungal peptides, the number of antiviral peptides is gradually increasing. Some of the AMPs that are shown as effective antivirals have been deployed against viruses such as influenza A virus, severe acute respiratory syndrome coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and other viruses. This review offers an overview of AVPs that have been approved within the past few years and will set out a few of the most essential patents and their usage within the context mentioned above during 2000-2020. Moreover, the present study will explain some of the progress in antiviral drugs based on peptides and peptide-related antivirals.

4.
Microb Pathog ; 173(Pt A): 105866, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36336133

ABSTRACT

BACKGROUND: With the emergence of drug-resistant fungi and the increased population prone to fungal infections, more effective antifungal drugs are needed. Aurein 1.2 is a potent antimicrobial peptide. Here, we designed a novel derivative of Aurein 1.2, called Aurein N3, which is a modified form of Aurein N2 (another Aurein 1.2 derivative), in which Lys 8 residue was replaced with Leu 13, and was also modified by creating two other mutations. METHODS: Aurein N3 was designed using several algorithms and docking studies. All peptides were synthesized and some of their bio-activity indices such as antifungal properties on 11 fungi, cytotoxicity, hemolysis, and time of the killing were investigated. Electron microscopy, lived/dead staining, and ergosterol binding assay were performed to study their mechanism of action. RESULTS: In comparison to Aurein 1.2 and N2, the docking studies showed that Aurein N3 has reduced binding energy toward ergosterol. The antifungal assessments showed that both Aurein N2 and N3 had strong activity against many fungi. Aurein N3 had lower cytotoxicity and higher binding capability to ergosterol. The hemolytic activity of Aurein N2 and N3 was less than parental Aurein 1.2. All peptides were able to attack the cell wall/membrane and enter the fungi cells. CONCLUSION: Here we introduced a novel derivative of Aurein 1.2 which has lower cytotoxicity, higher ergosterol-binding capability, and comparable antifungal activity compared to the original peptides. It can bind to ergosterol and can also attack the cell wall/membrane of fungi, although more studies are required to find its accurate mechanism of action.


Subject(s)
Antifungal Agents , Antimicrobial Cationic Peptides , Antifungal Agents/chemistry , Antimicrobial Cationic Peptides/metabolism , Cell Membrane , Ergosterol/metabolism , Fungi/metabolism , Hemolysis , Microbial Sensitivity Tests
5.
Hum Immunol ; 83(12): 826-831, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36058765

ABSTRACT

During pregnancy, the immune responses are modulated to protect mothers and infants from different pathogens. Cathelicidin as an antimicrobial peptide has a defending role against many pathogens. In this study, to better understand the role of cathelicidin peptide and three of its related proteins in immune pathways (ERK, MyD88, and TLR-9) in the immune system during pregnancy, we examined their expression in the blood of non-pregnant and pregnant mothers and their infant's cord blood. Blood samples were taken, and their peripheral blood mononuclear cells (PBMCs) were obtained. The expression level of cathelicidin was determined by quantitative PCR. Also, the expression of cathelicidin, ERK, MyD88, and TLR-9 was assessed by Western blotting. Higher level of cathelicidin mRNA was detected in the cord blood samples compared to other samples. The Western blotting results showed higher levels of cathelicidin, ERK, MyD88, and TLR-9 in the cord blood samples than in the blood of both pregnant and non-pregnant samples. Also, the level of all molecules was higher in pregnant than non-pregnant women. These high levels of the mentioned molecules are necessary to protect the mother and fetus against various pathogens, although understanding their mechanism of action needs more studies.


Subject(s)
Fetal Blood , Myeloid Differentiation Factor 88 , Female , Humans , Infant , Pregnancy , Leukocytes, Mononuclear/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/analysis , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 9/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Cathelicidins
6.
Iran J Biotechnol ; 20(4): e2818, 2022 Oct.
Article in English | MEDLINE | ID: mdl-38344319

ABSTRACT

Background: The Forumad chromite area from Sabzevar ophiolite belt, Northeastern Iran, is an environment with high concentration of heavy metals, particularly chromite and magnesite minerals, containing chromium and magnesium. Objectives: In this study for the first time, we analyzed and report the diversity of microbial (bacterial and archaeal) community inhabiting in Forumad chromite mine environment using metagenomics approach. Materials and Methods: Samples were obtained from different areas of the mine, and total DNA was extracted from water and soil samples. 16S rDNA was amplified using universal primers and the PCR products were cloned in pTz57R/T plasmid. Then, 43% of the positive clones were randomly sequenced. BLAST program in NCBI and EzTaxon databases were used to identify similar 16S rDNA sequences. Phylogenetic analysis was performed using the MEGA5 software and multiple alignments of sequences. Results: In the phylogenetic analyses, proteobacteria, which contains many heavy metals tolerant bacteria especially chromium, were the dominant population in bacterial libraries with Rheinheimera and Cedecaeas the most abundant genuses. Other phyla were Bacteroidetes, Firmicutes, Verrucomicrobia, Chloroflexi, Actinobacteria, Acidobacteria, Cyanobacteria, Gemmatimonadetes, and Planctomycetes. In the archaeal clone library, all the sequences were related to the phylum Thaumarchaeota. Further, 68.6% of the sequences had less than 98.7℅ similarity with the recorded strains which could represent new taxons. Conclusions: The results showed that there was a high microbial diversity in the Forumad chromite area. These results can be used for detoxification and bioremediation of regions contaminated with heavy metals, although more studies are needed.

7.
Expert Rev Anti Infect Ther ; 19(10): 1205-1217, 2021 10.
Article in English | MEDLINE | ID: mdl-33844613

ABSTRACT

Introduction: There are currently no specific drugs and universal vaccines for Coronavirus disease 2019 (COVID-19), hence urgent effective measures are needed to discover and develop therapeutic agents. Applying peptide therapeutics and their related compounds is a promising strategy to achieve this goal. This review is written based on the literature search using several databases, previous studies, scientific reports, our current knowledge about the antimicrobial peptides (AMPs), and our personal analyses on the potential of the antiviral peptides for the treatment of COVID-19.Areas covered: In this review, we begin with a brief description of SARS-CoV2 followed by a comprehensive description of antiviral peptides (AVPs) including natural and synthetic AMPs or AVPs and peptidomimetics. Subsequently, the structural features, mechanisms of action, limitations, and therapeutic applications of these peptides are explained.Expert opinion: Regarding the lack and the limitations of drugs against COVID-19, AMPs, AVPs, and other peptide-like compounds such as peptidomimetics have captured the attention of researchers due to their potential antiviral activities. Some of these compounds comprise unique properties and have demonstrated the potential to fight SARS-CoV2, particularly melittin, lactoferrin, enfuvirtide, and rupintrivir that have the potential to enter animal and clinical trials for the treatment of COVID-19.


Subject(s)
Antimicrobial Cationic Peptides/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Antimicrobial Cationic Peptides/chemistry , Antiviral Agents/chemistry , COVID-19/prevention & control , Cathelicidins/therapeutic use , Computer Simulation , Defensins/therapeutic use , Hepcidins/therapeutic use , Humans , Lactoferrin/therapeutic use , Melitten/therapeutic use , Molecular Structure , Peptidomimetics/therapeutic use , SARS-CoV-2 , Viral Structures
8.
J Microbiol Methods ; 151: 99-105, 2018 08.
Article in English | MEDLINE | ID: mdl-29953874

ABSTRACT

Next Generation Sequencing (NGS) technologies are revolutionizing the field of biology and metagenomic-based research. Since the volume of metagenomic data is typically very large, De novo metagenomic assembly can be effectively used to reduce the total amount of data and enhance quality of downstream analysis, such as annotation and binning. Although, there are many freely available assemblers, but selecting one suitable for a specific goal can be highly challenging. In this study, the performance of 11 well-known assemblers was evaluated in the assembly of three different metagenomes. The results obtained show that metaSPAdes is the best assembler and Megahit is a good choice for conservative assembly strategy. In addition, this research provides useful information regarding the pros and cons of each assembler and the effect of read length on assembly, thereby helping scholars to select the optimal assembler based on their objectives.


Subject(s)
Computational Biology/methods , Metagenome , Metagenomics/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...