Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 47: 108969, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36879614

ABSTRACT

The Ghana Digital Seismic Network (GHDSN) data, with six broadband sensors, operating in southern Ghana for two years (2012-2014). The recorded dataset is processed for simultaneous event detection and phase picking by a Deep Learning (DL) model, the EQTransformer tool. Here, the detected earthquakes consisting of supporting data, waveforms (including P and S arrival phases), and earthquake bulletin are presented. The bulletin includes the 559 arrival times (292 P and 267 S phases) and waveforms of the 73 local earthquakes in SEISAN format. The supporting data encompasses the preliminary crustal velocity models obtained from the joint inversion analysis of the detected hypocentral parameters. These parameters comprised of a 6- layer model of the crustal velocity (Vp and Vp/Vs ratio), incident time sequence, and statistical analysis of the detected earthquakes and hypocentral parameters analyzed and relocated by the updated crustal velocity and graphic representation of them a 3D live figure enlighting the seismogenic depth of the region. This dataset has a unique appeal for earth science specialists to analyze and reprocess the detected waveforms and characterize the seismogenic sources and active faults in Ghana. The metadata and waveforms have been deposited at the Mendeley Data repository [1].

2.
Appl Intell (Dordr) ; 53(1): 634-657, 2023.
Article in English | MEDLINE | ID: mdl-35469120

ABSTRACT

An important challenge in metric learning is scalability to both size and dimension of input data. Online metric learning algorithms are proposed to address this challenge. Existing methods are commonly based on Passive/Aggressive (PA) approach. Hence, they can rapidly process large volumes of data with an adaptive learning rate. However, these algorithms are based on the Hinge loss and so are not robust against outliers and label noise. We address the challenges by formulating the online Distance/Similarity learning problem with the robust Rescaled Hinge loss function. The proposed model is rather general and can be applied to any PA-based online Distance/Similarity algorithm. To achieve scalability to data dimension, we propose low-rank online Distance/Similarity methods that learn a rectangular projection matrix instead of a full Mahalanobis matrix. The low-rank approaches not only reduce the computational cost but also keep the discrimination power of the learned metrics. Also, current online methods usually assume training triplets or pairwise constraints exist in advance. However, this assumption does not hold, and generating triplets using available batch sampling methods is both time and space consuming. We address this issue by developing an efficient, yet effective robust one-pass triplet construction algorithm. We conduct several experiments on datasets from various applications. The results confirm that the proposed methods significantly outperform state-of-the-art online metric learning methods in the presence of label noise and outliers by a large margin.

3.
J Med Signals Sens ; 11(2): 108-119, 2021.
Article in English | MEDLINE | ID: mdl-34268099

ABSTRACT

BACKGROUND: Mass spectrometry is a method for identifying proteins and could be used for distinguishing between proteins in healthy and nonhealthy samples. This study was conducted using mass spectrometry data of ovarian cancer with high resolution. Usually, diagnostic and monitoring tests are done according to sensitivity and specificity rates; thus, the aim of this study is to compare mass spectrometry of healthy and cancerous samples in order to find a set of biomarkers or indicators with a reasonable sensitivity and specificity rates. METHODS: Therefore, combination methods were used for choosing the optimum feature set as t-test, entropy, Bhattacharya, and an imperialist competitive algorithm with K-nearest neighbors classifier. The resulting feature from each method was feed to the C5 decision tree with 10-fold cross-validation to classify data. RESULTS: The most important variables using this method were identified and a set of rules were extracted. Similar to most frequent features, repetitive patterns were not obtained; the generalized rule induction method was used to identify the repetitive patterns. CONCLUSION: Finally, the resulting features were introduced as biomarkers and compared with other studies. It was found that the resulting features were very similar to other studies. In the case of the classifier, higher sensitivity and specificity rates with a lower number of features were achieved when compared with other studies.

4.
Entropy (Basel) ; 24(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35052034

ABSTRACT

Masi entropy is a popular criterion employed for identifying appropriate threshold values in image thresholding. However, with an increasing number of thresholds, the efficiency of Masi entropy-based multi-level thresholding algorithms becomes problematic. To overcome this, we propose a novel differential evolution (DE) algorithm as an effective population-based metaheuristic for Masi entropy-based multi-level image thresholding. Our ME-GDEAR algorithm benefits from a grouping strategy to enhance the efficacy of the algorithm for which a clustering algorithm is used to partition the current population. Then, an updating strategy is introduced to include the obtained clusters in the current population. We further improve the algorithm using attraction (towards the best individual) and repulsion (from random individuals) strategies. Extensive experiments on a set of benchmark images convincingly show ME-GDEAR to give excellent image thresholding performance, outperforming other metaheuristics in 37 out of 48 cases based on cost function evaluation, 26 of 48 cases based on feature similarity index, and 20 of 32 cases based on Dice similarity. The obtained results demonstrate that population-based metaheuristics can be successfully applied to entropy-based image thresholding and that strengthening both exploitation and exploration strategies, as performed in ME-GDEAR, is crucial for designing such an algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...