Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(1): 936-948, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34345985

ABSTRACT

Fipronil (FIP) is a highly effective insecticide that has been used in agriculture and veterinary medicine. Its neurotoxic effect to insects and to non-target organisms, after nonintentional exposure, was reported. Many studies were conducted to evaluate FIP effects on mammals. However, slight is known about its effect on the brain stem and diencephalon. The current study was designed to investigate the ability of FIP to induce oxidative stress as a molecular mechanism of FIP neurotoxicity that resulted in apoptosis and neural tissue reactivity in these regions. Ten adult male rats received 10 mg/kg of FIP technical grade by oral gavage, daily for 45 days. Brain stem and diencephalon were processed to examine oxidative stress-induced macromolecular alteration (MDA, PCC and DNA fragmentation). Also, the histopathological assessment and immunoreactivity for caspase-3 (active form), iNOS and GFAP were performed on the thalamus, hypothalamus and medulla oblongata. Our results revealed that FIP significantly raised MDA, PCC and DNA fragmentation (p ≤ 0.05). In addition, significantly increased immunoreactivity to GFAP, iNOS and caspase-3 (active form) in the FIP-treated group was noticed (p ≤ 0.05). Moreover, alterations in the histoarchitecture of the neural tissue of these regions were observed. We conclude that FIP can induce oxidative stress, leading to apoptosis and tissue reaction in brain stem and diencephalon.


Subject(s)
Apoptosis , Brain Stem/pathology , Diencephalon/pathology , Oxidative Stress , Pyrazoles/toxicity , Animals , Apoptosis/drug effects , Brain Stem/drug effects , Diencephalon/drug effects , Insecticides/toxicity , Male , Oxidative Stress/drug effects , Rats
2.
Acta Histochem ; 123(6): 151764, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34352653

ABSTRACT

Fipronil (FIP) insecticide is extensively used in agriculture, public health and veterinary medicine. Although it is considered as a neurotoxin to insects (target organisms) and exhibits neurological signs upon vertebrates (non-target organisms) exposure, slight is known about its potential neurotoxic effects and its molecular mechanisms on vertebrates. The current study is designed to assess oxidative stress as a molecular mechanism of FIP neurotoxicity subordinated with apoptosis and neural tissue reactivity. Ten adult male albino rats received 10 mg/kg body weight fipronil technical grade by oral gavage daily for 45 days (subacute exposure). Brain neural tissue regions (hippocampus, cerebellum and caudate putamen) were processed to examine oxidative stress induced cellular macromolecular alterations as MDA, PCC and DNA fragmentation. Besides, TNF-α and Bcl-2 gene expression and immunoreactivity for caspase-3 (active form), iNOS and GFAP were evaluated. Also, histopathological assessment was conducted. We found that FIP significantly raised MDA, PCC and DNA fragmentation (p ≤ 0.05). Also, it significantly upregulated TNF-α and non-significantly down-regulated Bcl-2 gene expression (p ≤ 0.05). Further, significant increased immunoreactivity to GFAP, iNOS and caspase-3 (active form) in these brain neural tissue regions in FIP treated group was noticed (p ≤ 0.05). Histopathological findings, including alterations in the histological architecture and neuronal degeneration, were also observed in these brain regions of FIP treated group. In conclusion, we suggest the ability of FIP to induce oxidative stress mediated macromolecular alterations, leading to apoptosis and tissue reaction in these brain regions which showed variable susceptibility to FIP toxic effects.


Subject(s)
Apoptosis/drug effects , DNA Fragmentation/drug effects , Nerve Tissue/metabolism , Oxidative Stress/drug effects , Pyrazoles/adverse effects , Animals , Caspase 3/biosynthesis , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/biosynthesis , Male , Nerve Tissue/pathology , Nitric Oxide Synthase Type II/biosynthesis , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Pyrazoles/pharmacology , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...