Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Epidemiol Infect ; 149: e138, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33910670

ABSTRACT

Susceptible S-Infected I-Recovered R-Death D (SIRD) compartmental models are often used for modelling of infectious diseases. On the basis of the analogy between SIRD and compartmental models in hydrology, this study makes mathematical formulations developed in hydrology available for modelling in epidemiology. We adapt the Hayami model solution of the diffusive wave equation generally used in hydrological modelling to compartmental I-R-D models in epidemiology by simulating the relationships between the number of infectious I(t), the number of recoveries R(t) and the number of deaths D(t). The Hayami model is easy-to-use, robust and parsimonious. We compare the empirical one-parameter exponential model usually used in SIRD models to the two-parameter Hayami model. Applications were implemented on the recent Covid-19 pandemic. The application on data from 24 countries shows that both models give comparable performances for modelling the I-D relationship. However, for modelling the I-R relationship and the active cases, the exponential model gives fair performances whereas the Hayami model substantially improves the model performances. The Hayami model also presents the advantage that its parameters can be easily estimated from the analysis of the data distributions of I(t), R(t) and D(t). The Hayami model is parsimonious with only two parameters which are useful to compare the temporal evolution of recoveries and deaths in different countries based on different contamination rates and recoveries strategies. This study highlights the interest of knowledge transfer between different scientific disciplines in order to model different processes.


Subject(s)
COVID-19/epidemiology , Models, Statistical , Global Health/statistics & numerical data , Humans , Hydrology , SARS-CoV-2
2.
Sensors (Basel) ; 19(7)2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30925762

ABSTRACT

In this paper, we studied water transport under an unsteady flow regime in an experimental channel (4 m in length; 3 cm in width). Our experiments implicated some measuring requirements, specifically, a water level (WL) detection technique that is able to measure WL in a range of 2 cm with a precision of 1 mm. The existing WL detection techniques could not meet our measurement requirements. Therefore, we propose a new measurement method that combines two approaches: An "old" water contact technique (float) with a "new" remote non-contact technique (infrared sensor). We used an extruded polystyrene (XPS Foam) that needed some adequate treatment before using it as float in experimental measurements. The combination of IR-sensors with treated float foam lead to a sensitive measurement method that is able to detect flat and sharp flow signals, as well as highly dynamic variations of water surface level. Based on the experimental measurements of WL and outflow at the channel output, we deduced a loop rating curve that is suitable with a power law adjustment. The new measurement method could be extended to larger scale applications like rivers and more complicated cross section geometry of irregular shape.

3.
J Environ Qual ; 38(3): 1031-41, 2009.
Article in English | MEDLINE | ID: mdl-19329691

ABSTRACT

The aim of this article is to determine how the nematicide cadusafos [S,S-di-sec-butyl O-ethyl phosphorodithioate] contaminates water and soils at two scales, subcatchment and catchment. The study site was a small banana (Musa spp.)-growing catchment on the tropical volcanic island of Guadeloupe in the Caribbean. Two application campaigns were conducted, one in 2003 on 40% of the catchment and one in 2006 on 12%. The study involved monitoring for 100 d the surface water and groundwater flows and the cadusafos concentrations in the soil and in surface and groundwaters in a 2400 m(2) subcatchment and a 17.8 ha catchment. The results show that at the subcatchment scale the high retention in the A horizon of the soil limits the transport of cadusafos by runoff, whereas the lower retention of the molecule in the B horizon favors percolation toward the shallow groundwater. Comparing the losses of cadusafos at the subcatchment and at the catchment scales revealed that the nematicide re-infiltrated in the hydrographic network. Two successive phases of stream water contamination were observed, corresponding to two distinct contamination mechanisms: an event-dominated contamination phase (of <30 d) when transport was linked to overland flow during precipitation shortly after application, and a stabilized contamination phase when transport originated mainly from the drainage of the shallow aquifer. Lastly, comparing the losses of the two phases during 2003 and 2006 showed that shallow groundwater, which is promoted in such permeable soils under abundant tropical rainfalls, seems to be the main contributor to stream contamination.


Subject(s)
Antinematodal Agents/analysis , Fresh Water/analysis , Organothiophosphorus Compounds/analysis , Pesticide Residues/analysis , Water Pollutants, Chemical/analysis , Guadeloupe , Musa/growth & development , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...