Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cortex ; 159: 26-38, 2023 02.
Article in English | MEDLINE | ID: mdl-36608419

ABSTRACT

Every waking second, we make three saccadic eye movements that move our retinal images. Thus, to attain a coherent image of the world we need to remember visuo-spatial information across saccades. But transsaccadic working memory (tWM) remains poorly understood. Crucially, there has been a debate whether there are any differences in tWM for the left vs. right visual field and depending on saccade direction. However, previous studies have probed tWM with minimal loads whereas spatial differences might arise with higher loads. Here we employed a task that probed higher memory load for spatial information in the left and right visual field and with horizontal as well as vertical saccades. We captured several measures of precision and accuracy of performance that, when submitted to principal component analysis, produced two components. Component 1, mainly associated with precision, yielded greater error for the left than the right visual field. Component 2 was associated with performance accuracy and unexpectedly produced a disadvantage after rightward saccades. Both components showed that performance was worse when rightward or leftward saccades afforded a shift of memory representations between visual fields compared to remapping within the same field. Our study offers several novel findings. It is the first to show that tWM involves at least two components likely reflecting working memory capacity and strategic aspects of working memory, respectively. Reduced capacity for the left, rather than the right visual field is consistent with how the left and right visual fields are known to be represented in the two hemispheres. Remapping difficulties between visual fields is consistent with the limited information transfer across the corpus callosum. Finally, the impact of rightward saccades on working memory might be due to greater interference of the accompanying shifts of attention. Our results highlight the dynamic nature of transsaccadic working memory.


Subject(s)
Memory, Short-Term , Visual Fields , Humans , Space Perception , Memory Disorders , Attention , Saccades , Visual Perception
2.
Acta Psychol (Amst) ; 219: 103398, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34419689

ABSTRACT

Working memory is fundamental to human cognitive functioning, and it is often measured with the n-back task. However, it is not clear whether the n-back task is a valid measure of working memory. Importantly, previous studies have found poor correlations with measures of complex span, whereas a recent study (Frost et al., 2019) showed that n-back performance was correlated with a transsaccadic memory task but dissociated from performance on the change detection task, a well-accepted measure of working memory capacity. To test whether capacity is involved in the n-back task we correlated a spatial version of the test with different versions of the change detection task. Experiment 1 introduced perceptual and cognitive disruptions to the change detection task. This impacted task performance, however, all versions of the change detection task remained highly correlated with one another whereas there was no significant correlation with the n-back task. Experiment 2 removed spatial and non-spatial context from the change detection task. This produced a correlation with n-back. Our results indicate that the n-back task is supported by faculties similar to those that support change detection, but that this commonality is hidden when contextual information is available to be exploited in a change detection task such that structured representations can form. We suggest that n-back might be a valid measure of working memory, and that the ability to exploit contextual information is an important faculty captured by some versions of the change detection task.


Subject(s)
Cognition , Memory, Short-Term , Humans , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...