Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Res Ther ; 16(1): 97, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702802

ABSTRACT

BACKGROUND: The locus coeruleus (LC) and the nucleus basalis of Meynert (NBM) are altered in early stages of Alzheimer's disease (AD). Little is known about LC and NBM alteration in limbic-predominant age-related TDP-43 encephalopathy (LATE) and frontotemporal dementia (FTD). The aim of the present study is to investigate in vivo LC and NBM integrity in patients with suspected-LATE, early-amnestic AD and FTD in comparison with controls. METHODS: Seventy-two participants (23 early amnestic-AD patients, 17 suspected-LATE, 17 FTD patients, defined by a clinical-biological diagnosis reinforced by amyloid and tau PET imaging, and 15 controls) underwent neuropsychological assessment and 3T brain MRI. We analyzed the locus coeruleus signal intensity (LC-I) and the NBM volume as well as their relation with cognition and with medial temporal/cortical atrophy. RESULTS: We found significantly lower LC-I and NBM volume in amnestic-AD and suspected-LATE in comparison with controls. In FTD, we also observed lower NBM volume but a slightly less marked alteration of the LC-I, independently of the temporal or frontal phenotype. NBM volume was correlated with the global cognitive efficiency in AD patients. Strong correlations were found between NBM volume and that of medial temporal structures, particularly the amygdala in both AD and FTD patients. CONCLUSIONS: The alteration of LC and NBM in amnestic-AD, presumed-LATE and FTD suggests a common vulnerability of these structures to different proteinopathies. Targeting the noradrenergic and cholinergic systems could be effective therapeutic strategies in LATE and FTD.


Subject(s)
Alzheimer Disease , Basal Nucleus of Meynert , Frontotemporal Dementia , Locus Coeruleus , Magnetic Resonance Imaging , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Male , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Female , Aged , Magnetic Resonance Imaging/methods , Basal Nucleus of Meynert/diagnostic imaging , Basal Nucleus of Meynert/pathology , Middle Aged , Neuropsychological Tests , Amnesia/diagnostic imaging , Positron-Emission Tomography/methods
2.
Alzheimers Res Ther ; 15(1): 91, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138309

ABSTRACT

BACKGROUND: Monitoring the progression of Tau pathology makes it possible to study the clinical diversity of Alzheimer's disease. In this 2-year longitudinal PET study, we aimed to determine the progression of [18F]-flortaucipir binding and of cortical atrophy, and their relationships with cognitive decline. METHODS: Twenty-seven AD patients at the mild cognitive impairment/mild dementia stages and twelve amyloid-negative controls underwent a neuropsychological assessment, 3 T brain MRI, and [18F]-flortaucipir PET imaging (Tau1) and were monitored annually over 2 years with a second brain MRI and tau-PET imaging after 2 years (Tau2). We analyzed the progression of tau standardized uptake value ratio (SUVr) and grey matter atrophy both at the regional and voxelwise levels. We used mixed effects models to explore the relations between the progression of SUVr values, cortical atrophy, and cognitive decline. RESULTS: We found an average longitudinal increase in tau SUVr values, except for the lateral temporoparietal cortex where the average SUVr values decreased. Individual analyses revealed distinct profiles of SUVr progression according to temporoparietal Tau1 uptake: high-Tau1 patients demonstrated an increase in SUVr values over time in the frontal lobe, but a decrease in the temporoparietal cortex and a rapid clinical decline, while low-Tau1 patients displayed an increase in SUVr values in all cortical regions and a slower clinical decline. Cognitive decline was strongly associated with the progression of regional cortical atrophy, but only weakly associated with SUVr progression. CONCLUSIONS: Despite a relatively small sample size, our results suggest that tau-PET imaging could identify patients with a potentially "more aggressive" clinical course characterized by high temporoparietal Tau1 SUVr values and a rapid clinical progression. In these patients, the paradoxical decrease in temporoparietal SUVr values over time could be due to the rapid transition to ghost tangles, for which the affinity of the radiotracer is lower. They could particularly benefit from future therapeutic trials, the neuroimaging outcome measures of which deserve to be discussed.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/metabolism , Longitudinal Studies , tau Proteins/metabolism , Cognitive Dysfunction/metabolism , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Disease Progression , Atrophy
3.
J Neurol Neurosurg Psychiatry ; 93(5): 459-467, 2022 05.
Article in English | MEDLINE | ID: mdl-35228270

ABSTRACT

OBJECTIVES: To explore whether regional tau binding measured at baseline is associated with the rapidity of Alzheimer's disease (AD) progression over 2 years, as assessed by the decline in specified cognitive domains, and the progression of regional brain atrophy, in comparison with amyloid-positron emission tomography (PET), MRI and cerebrospinal fluid (CSF) biomarkers. METHODS: Thirty-six patients with AD (positive CSF biomarkers and amyloid-PET) and 15 controls underwent a complete neuropsychological assessment, 3T brain MRI, [11C]-PiB and [18F]-flortaucipir PET imaging, and were monitored annually over 2 years, with a second brain MRI after 2 years. We used mixed effects models to explore the relations between tau-PET, amyloid-PET, CSF biomarkers and MRI at baseline and cognitive decline and the progression of brain atrophy over 2 years in patients with AD. RESULTS: Baseline tau-PET was strongly associated with the subsequent cognitive decline in regions that are usually associated with each cognitive domain. No significant relationship was observed between the cognitive decline and initial amyloid load, regional cortical atrophy or CSF biomarkers. Baseline tau tracer binding in the superior temporal gyrus was associated with subsequent atrophy in an inferomedial temporal volume of interest, as was the voxelwise tau tracer binding with subsequent cortical atrophy in the superior temporal, parietal and frontal association cortices. CONCLUSIONS: These results suggest that tau tracer binding is predictive of cognitive decline in AD in domain-specific brain areas, which provides important insights into the interaction between tau burden and neurodegeneration, and is of the utmost importance to develop new prognostic markers that will help improve the design of therapeutic trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Atrophy , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/cerebrospinal fluid , Humans , Positron-Emission Tomography/methods , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...