Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Matrix Biol Plus ; 18: 100130, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36941890

ABSTRACT

Type II collagen is the major fibrillar collagen in cartilage. It is synthesized in the form of precursors (procollagens) containing N- and C-terminal propeptides. The two main isoforms of type II procollagen protein are type IIA and type IIB procollagens, generated in a developmentally regulated manner by differential splicing of the primary gene transcript. Isoform IIA contains exon 2 and is produced mainly by chondroprogenitor cells while isoform IIB lacks exon 2 and is produced by differentiated chondrocytes. Thus, expression of IIA and IIB isoforms are reliable markers for identifying the differentiation status of chondrocytes but their biological function in the context of skeletal development is still not yet fully understood. Specific antibodies against IIA and IIB procollagen isoforms are already available. In this study, a synthetic peptide spanning the junction between exon 1 and exon 3 of the murine sequence was used as an immunogen to generate a novel rabbit polyclonal antibody directed against procollagen IIB. Characterization of this antibody by Western-blotting analysis of murine cartilage extracts and ELISA tests demonstrated its specificity to the type IIB isoform. Furthermore, by immunohistochemical studies, this antibody allowed the detection of procollagen IIB in embryonic cartilage as well as in articular cartilage and growth plate of young adult mice. Interestingly, this is the first antibody that has allowed the detection of procollagen IIB at both the intra- and extracellular level. This antibody therefore represents an interesting new tool for monitoring the spatial and temporal distribution of IIB isoforms in skeletal tissues of mouse models and for tracking the trafficking and processing of type IIB procollagen.

2.
Front Physiol ; 14: 1070241, 2023.
Article in English | MEDLINE | ID: mdl-36733912

ABSTRACT

Epigenetics defines the modifications of the genome that do not involve a change in the nucleotide sequence of DNA. These modifications constitute a mechanism of gene regulation poorly explored in the context of cartilage physiology. They are now intensively studied by the scientific community working on articular cartilage and its related pathology such as osteoarthritis. Indeed, epigenetic regulations can control the expression of crucial gene in the chondrocytes, the only resident cells of cartilage. Some epigenetic changes are considered as a possible cause of the abnormal gene expression and the subsequent alteration of the chondrocyte phenotype (hypertrophy, proliferation, senescence…) as observed in osteoarthritic cartilage. Osteoarthritis is a joint pathology, which results in impaired extracellular matrix homeostasis and leads ultimately to the progressive destruction of cartilage. To date, there is no pharmacological treatment and the exact causes have yet to be defined. Given that the epigenetic modifying enzymes can be controlled by pharmacological inhibitors, it is thus crucial to describe the epigenetic marks that enable the normal expression of extracellular matrix encoding genes, and those associated with the abnormal gene expression such as degradative enzyme or inflammatory cytokines encoding genes. In this review, only the DNA methylation and histone modifications will be detailed with regard to normal and osteoarthritic cartilage. Although frequently referred as epigenetic mechanisms, the regulatory mechanisms involving microRNAs will not be discussed. Altogether, this review will show how this nascent field influences our understanding of the pathogenesis of OA in terms of diagnosis and how controlling the epigenetic marks can help defining epigenetic therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...