Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33602808

ABSTRACT

Cullin-RING (really intersting new gene) E3 ubiquitin ligases (CRLs) are the largest E3 family and direct numerous protein substrates for proteasomal degradation, thereby impacting a myriad of physiological and pathological processes including cancer. To date, there are no reported small-molecule inhibitors of the catalytic activity of CRLs. Here, we describe high-throughput screening and medicinal chemistry optimization efforts that led to the identification of two compounds, 33-11 and KH-4-43, which inhibit E3 CRL4 and exhibit antitumor potential. These compounds bind to CRL4's core catalytic complex, inhibit CRL4-mediated ubiquitination, and cause stabilization of CRL4's substrate CDT1 in cells. Treatment with 33-11 or KH-4-43 in a panel of 36 tumor cell lines revealed cytotoxicity. The antitumor activity was validated by the ability of the compounds to suppress the growth of human tumor xenografts in mice. Mechanistically, the compounds' cytotoxicity was linked to aberrant accumulation of CDT1 that is known to trigger apoptosis. Moreover, a subset of tumor cells was found to express cullin4 proteins at levels as much as 70-fold lower than those in other tumor lines. The low-cullin4-expressing tumor cells appeared to exhibit increased sensitivity to 33-11/KH-4-43, raising a provocative hypothesis for the role of low E3 abundance as a cancer vulnerability.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Ubiquitin-Protein Ligases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Enzyme Inhibitors/chemistry , Female , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Tumor Cells, Cultured , Ubiquitin/metabolism , Ubiquitination , Xenograft Model Antitumor Assays
2.
ACS Chem Biol ; 15(8): 2041-2047, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32633484

ABSTRACT

DHTKD1 is the E1 component of the 2-oxoadipate dehydrogenase complex, which is an enzyme involved in the catabolism of (hydroxy-)lysine and tryptophan. Mutations in DHTKD1 have been associated with 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth disease type 2Q and eosinophilic esophagitis, but the pathophysiology of these clinically distinct disorders remains elusive. Here, we report the identification of adipoylphosphonic acid and tenatoprazole as DHTKD1 inhibitors using targeted and high throughput screening, respectively. We furthermore elucidate the DHTKD1 crystal structure with thiamin diphosphate bound at 2.25 Å. We also report the impact of 10 disease-associated missense mutations on DHTKD1. Whereas the majority of the DHTKD1 variants displayed impaired folding or reduced thermal stability in combination with absent or reduced enzyme activity, three variants showed no abnormalities. Our work provides chemical and structural tools for further understanding of the function of DHTKD1 and its role in several human pathologies.


Subject(s)
Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Thiamine Pyrophosphate/chemistry , Circular Dichroism , Crystallography, X-Ray , Humans , Ketoglutarate Dehydrogenase Complex/chemistry , Ketoglutarate Dehydrogenase Complex/genetics , Molecular Structure , Mutation, Missense
3.
ACS Med Chem Lett ; 10(12): 1661-1666, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31857843

ABSTRACT

YEATS-domain-containing MLLT1 is an acetyl/acyl-lysine reader domain, which is structurally distinct from well-studied bromodomains and has been strongly associated in development of cancer. Here, we characterized piperazine-urea derivatives as an acetyl/acyl-lysine mimetic moiety for MLLT1. Crystal structures revealed distinct interaction mechanisms of this chemotype compared to the recently described benzimidazole-amide based inhibitors, exploiting different binding pockets within the protein. Thus, the piperazine-urea scaffold offers an alternative strategy for targeting the YEATS domain family.

4.
Methods Enzymol ; 610: 27-58, 2018.
Article in English | MEDLINE | ID: mdl-30390803

ABSTRACT

Chemical probes are small molecules with potency and selectivity for a single or small number of protein targets. A good chemical probe engages its target intracellularly and is accompanied by a chemically similar, but inactive molecule to be used as a negative control in cellular phenotypic screening. The utility of these chemical probes is ultimately governed by how well they are developed and characterized. Chemical probes either as single entities, or in chemical probes sets are being increasingly used to interrogate the biological relevance of a target in a disease model. This chapter lays out the core properties of chemical probes, summarizes the seminal and emerging techniques used to demonstrate robust intracellular target engagement. Translation of target engagement assays to disease-relevant phenotypic assays using primary patient-derived cells and tissues is also reviewed. Two examples of epigenetic chemical probe discovery and utility are presented whereby target engagement pointed to novel disease associations elucidated from poorly understood protein targets. Finally, a number of examples are discussed whereby chemical probe sets, or "chemogenomic libraries" are used to illuminate new target-disease links which may represent future directions for chemical probe utility.


Subject(s)
Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Epigenesis, Genetic/drug effects , Humans , Molecular Targeted Therapy/methods
5.
J Med Chem ; 61(23): 10929-10934, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30407816

ABSTRACT

Lysine acetylation is an epigenetic mark that is principally recognized by bromodomains, and recently structurally diverse YEATS domains also emerged as readers of lysine acetyl/acylations. Here we present a crystallography-based strategy and the discovery of fragments binding to the ENL YEATS domain, a potential drug target. Crystal structures combined with synthetic efforts led to the identification of a submicromolar binder, providing first starting points for the development of chemical probes for this reader domain family.


Subject(s)
Drug Design , Transcriptional Elongation Factors/antagonists & inhibitors , Humans , Models, Molecular , Protein Conformation , Transcriptional Elongation Factors/chemistry
6.
Angew Chem Int Ed Engl ; 57(50): 16302-16307, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30288907

ABSTRACT

YEATS domain (YD) containing proteins are an emerging class of epigenetic targets in drug discovery. Dysregulation of these modified lysine-binding proteins has been linked to the onset and progression of cancers. We herein report the discovery and characterisation of the first small-molecule chemical probe, SGC-iMLLT, for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). SGC-iMLLT is a potent and selective inhibitor of MLLT1/3-histone interactions. Excellent selectivity over other human YD proteins (YEATS2/4) and bromodomains was observed. Furthermore, our probe displays cellular target engagement of MLLT1 and MLLT3. The first small-molecule X-ray co-crystal structures with the MLLT1 YD are also reported. This first-in-class probe molecule can be used to understand MLLT1/3-associated biology and the therapeutic potential of small-molecule YD inhibitors.


Subject(s)
Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Small Molecule Libraries/chemistry , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Crystallography, X-Ray , Histones/metabolism , Humans , Molecular Docking Simulation , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Protein Domains , Protein Interaction Maps/drug effects , Small Molecule Libraries/pharmacology , Transcription Factors/metabolism
7.
Bioorg Med Chem ; 26(11): 2965-2972, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29567296

ABSTRACT

The polyadenosine-diphosphate-ribose polymerase 14 (PARP14) has been implicated in DNA damage response pathways for homologous recombination. PARP14 contains three (ADP ribose binding) macrodomains (MD) whose exact contribution to overall PARP14 function in pathology remains unclear. A medium throughput screen led to the identification of N-(2(-9H-carbazol-1-yl)phenyl)acetamide (GeA-69, 1) as a novel allosteric PARP14 MD2 (second MD of PARP14) inhibitor. We herein report medicinal chemistry around this novel chemotype to afford a sub-micromolar PARP14 MD2 inhibitor. This chemical series provides a novel starting point for further development of PARP14 chemical probes.


Subject(s)
Cysteine Endopeptidases/chemistry , Drug Discovery , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerases/chemistry , Allosteric Regulation , Carbazoles/chemistry , Humans , Inhibitory Concentration 50 , Models, Biological , Molecular Docking Simulation , Molecular Structure , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/drug effects , Structure-Activity Relationship
8.
Angew Chem Int Ed Engl ; 56(3): 827-831, 2017 01 16.
Article in English | MEDLINE | ID: mdl-27966810

ABSTRACT

The p300/CBP-associated factor (PCAF) and related GCN5 bromodomain-containing lysine acetyl transferases are members of subfamily I of the bromodomain phylogenetic tree. Iterative cycles of rational inhibitor design and biophysical characterization led to the discovery of the triazolopthalazine-based L-45 (dubbed L-Moses) as the first potent, selective, and cell-active PCAF bromodomain (Brd) inhibitor. Synthesis from readily available (1R,2S)-(-)-norephedrine furnished L-45 in enantiopure form. L-45 was shown to disrupt PCAF-Brd histone H3.3 interaction in cells using a nanoBRET assay, and a co-crystal structure of L-45 with the homologous Brd PfGCN5 from Plasmodium falciparum rationalizes the high selectivity for PCAF and GCN5 bromodomains. Compound L-45 shows no observable cytotoxicity in peripheral blood mononuclear cells (PBMC), good cell-permeability, and metabolic stability in human and mouse liver microsomes, supporting its potential for in vivo use.


Subject(s)
Azo Compounds/pharmacology , Drug Discovery , Hydralazine/pharmacology , Molecular Probes/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Azo Compounds/chemical synthesis , Azo Compounds/chemistry , Dose-Response Relationship, Drug , Hydralazine/chemical synthesis , Hydralazine/chemistry , Molecular Probes/chemical synthesis , Molecular Probes/chemistry , Molecular Structure , Structure-Activity Relationship
9.
Medchemcomm ; 7(12): 2246-2264, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-29170712

ABSTRACT

In the last five years, the development of inhibitors of bromodomains has emerged as an area of intensive worldwide research. Emerging evidence has implicated a number of non-BET bromodomains in the onset and progression of diseases such as cancer, HIV infection and inflammation. The development and use of small molecule chemical probes has been fundamental to pre-clinical evaluation of bromodomains as targets. Recent efforts are described highlighting the development of potent, selective and cell active non-BET bromodomain inhibitors and their therapeutic potential. Over half of typical bromodomains now have reported ligands, but those with atypical binding site residues remain resistant to chemical probe discovery efforts.

SELECTION OF CITATIONS
SEARCH DETAIL
...