Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
iScience ; 27(4): 109591, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38632988

ABSTRACT

Targeting cancer metabolism to limit cellular energy and metabolite production is an attractive therapeutic approach. Here, we developed analogs of the bisbiguanide, alexidine, to target lung cancer cell metabolism and assess a structure-activity relationship (SAR). The SAR led to the identification of two analogs, AX-4 and AX-7, that limit cell growth via G1/G0 cell-cycle arrest and are tolerated in vivo with favorable pharmacokinetics. Mechanistic evaluation revealed that AX-4 and AX-7 induce potent mitochondrial defects; mitochondrial cristae were deformed and the mitochondrial membrane potential was depolarized. Additionally, cell metabolism was rewired, as indicated by reduced oxygen consumption and mitochondrial ATP production, with an increase in extracellular lactate. Importantly, AX-4 and AX-7 impacted overall cell behavior, as these compounds reduced collective cell invasion. Taken together, our study establishes a class of bisbiguanides as effective mitochondria and cell invasion disrupters, and proposes bisbiguanides as promising approaches to limiting cancer metastasis.

2.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38551497

ABSTRACT

Phenotypic heterogeneity poses a significant hurdle for cancer treatment but is under-characterized in the context of tumor invasion. Amidst the range of phenotypic heterogeneity across solid tumor types, collectively invading cells and single cells have been extensively characterized as independent modes of invasion, but their intercellular interactions have rarely been explored. Here, we isolated collectively invading cells and single cells from the heterogeneous 4T1 cell line and observed extensive transcriptional and epigenetic diversity across these subpopulations. By integrating these datasets, we identified laminin-332 as a protein complex exclusively secreted by collectively invading cells. Live-cell imaging revealed that laminin-332 derived from collectively invading cells increased the velocity and directionality of single cells. Despite collectively invading and single cells having similar expression of the integrin α6ß4 dimer, single cells demonstrated higher Rac1 activation upon laminin-332 binding to integrin α6ß4. This mechanism suggests a novel commensal relationship between collectively invading and single cells, wherein collectively invading cells promote the invasive potential of single cells through a laminin-332/Rac1 axis.


Subject(s)
Laminin , rac1 GTP-Binding Protein , Humans , Cell Movement , Integrin alpha6beta4/genetics , Kalinin , Laminin/genetics , Laminin/metabolism , Neoplasms/genetics , Symbiosis , Animals , Mice , Cell Line, Tumor , rac1 GTP-Binding Protein/metabolism
3.
Cell Stem Cell ; 31(1): 106-126.e13, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181747

ABSTRACT

Tissue stem-progenitor cell frequency has been implicated in tumor risk and progression, but tissue-specific factors linking these associations remain ill-defined. We observed that stiff breast tissue from women with high mammographic density, who exhibit increased lifetime risk for breast cancer, associates with abundant stem-progenitor epithelial cells. Using genetically engineered mouse models of elevated integrin mechanosignaling and collagen density, syngeneic manipulations, and spheroid models, we determined that a stiff matrix and high mechanosignaling increase mammary epithelial stem-progenitor cell frequency and enhance tumor initiation in vivo. Augmented tissue mechanics expand stemness by potentiating extracellular signal-related kinase (ERK) activity to foster progesterone receptor-dependent RANK signaling. Consistently, we detected elevated phosphorylated ERK and progesterone receptors and increased levels of RANK signaling in stiff breast tissue from women with high mammographic density. The findings link fibrosis and mechanosignaling to stem-progenitor cell frequency and breast cancer risk and causally implicate epidermal growth factor receptor-ERK-dependent hormone signaling in this phenotype.


Subject(s)
Breast Neoplasms , Animals , Mice , Female , Humans , Signal Transduction , Extracellular Signal-Regulated MAP Kinases , Epithelial Cells , Hormones
5.
PLoS One ; 18(10): e0292554, 2023.
Article in English | MEDLINE | ID: mdl-37819930

ABSTRACT

Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state with molecular profiles. This inability to integrate a live-cell phenotype-such as invasiveness, cell:cell interactions, and changes in spatial positioning-with multi-omic data creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomic and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live cells. This protocol requires cells expressing a photoconvertible fluorescent protein and employs live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulations for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live cell phenotypes and multi-omic heterogeneity within normal and diseased cellular populations.


Subject(s)
Genomics , Multiomics , Flow Cytometry/methods , Phenotype , Cell Communication
7.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909653

ABSTRACT

Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomics and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live-cells. We begin with cells stably expressing a photoconvertible fluorescent protein and employ live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulation for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live-cell phenotype and multi-omic heterogeneity within normal and diseased cellular populations.

8.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36747658

ABSTRACT

Oncogenic RAS mutations drive aggressive cancers that are difficult to treat in the clinic, and while direct inhibition of the most common KRAS variant in lung adenocarcinoma (G12C) is undergoing clinical evaluation, a wide spectrum of oncogenic RAS variants together make up a large percentage of untargetable lung and GI cancers. Here we report that loss-of-function alterations (mutations and deep deletions) in the gene that encodes HD-PTP (PTPN23) occur in up to 14% of lung cancers in the ORIEN Avatar lung cancer cohort, associate with adenosquamous histology, and occur alongside an altered spectrum of KRAS alleles. Furthermore, we show that in publicly available early-stage NSCLC studies loss of HD-PTP is mutually exclusive with loss of LKB1, which suggests they restrict a common oncogenic pathway in early lung tumorigenesis. In support of this, knockdown of HD-PTP in RAS-transformed lung cancer cells is sufficient to promote FAK-dependent invasion. Lastly, knockdown of the Drosophila homolog of HD-PTP (dHD-PTP/Myopic) synergizes to promote RAS-dependent neoplastic progression. Our findings highlight a novel tumor suppressor that can restrict RAS-driven lung cancer oncogenesis and identify a targetable pathway for personalized therapeutic approaches for adenosquamous lung cancer.

9.
Sci Adv ; 6(30): eaaz6197, 2020 07.
Article in English | MEDLINE | ID: mdl-32832657

ABSTRACT

Tumor heterogeneity drives disease progression, treatment resistance, and patient relapse, yet remains largely underexplored in invasion and metastasis. Here, we investigated heterogeneity within collective cancer invasion by integrating DNA methylation and gene expression analysis in rare purified lung cancer leader and follower cells. Our results showed global DNA methylation rewiring in leader cells and revealed the filopodial motor MYO10 as a critical gene at the intersection of epigenetic heterogeneity and three-dimensional (3D) collective invasion. We further identified JAG1 signaling as a previously unknown upstream activator of MYO10 expression in leader cells. Using live-cell imaging, we found that MYO10 drives filopodial persistence necessary for micropatterning extracellular fibronectin into linear tracks at the edge of 3D collective invasion exclusively in leaders. Our data fit a model where epigenetic heterogeneity and JAG1 signaling jointly drive collective cancer invasion through MYO10 up-regulation in epigenetically permissive leader cells, which induces filopodia dynamics necessary for linearized fibronectin micropatterning.

10.
J Clin Invest ; 130(11): 5721-5737, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32721948

ABSTRACT

Women with dense breasts have an increased lifetime risk of malignancy that has been attributed to a higher epithelial density. Quantitative proteomics, collagen analysis, and mechanical measurements in normal tissue revealed that stroma in the high-density breast contains more oriented, fibrillar collagen that is stiffer and correlates with higher epithelial cell density. microRNA (miR) profiling of breast tissue identified miR-203 as a matrix stiffness-repressed transcript that is downregulated by collagen density and reduced in the breast epithelium of women with high mammographic density. Culture studies demonstrated that ZNF217 mediates a matrix stiffness- and collagen density-induced increase in Akt activity and mammary epithelial cell proliferation. Manipulation of the epithelium in a mouse model of mammographic density supported a causal relationship between stromal stiffness, reduced miR-203, higher levels of the murine homolog Zfp217, and increased Akt activity and mammary epithelial proliferation. ZNF217 was also increased in the normal breast epithelium of women with high mammographic density, correlated positively with epithelial proliferation and density, and inversely with miR-203. The findings identify ZNF217 as a potential target toward which preexisting therapies, such as the Akt inhibitor triciribine, could be used as a chemopreventive agent to reduce cancer risk in women with high mammographic density.


Subject(s)
Breast Neoplasms , Mammary Glands, Human , Oncogene Proteins/metabolism , Trans-Activators/metabolism , Adult , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Double-Blind Method , Female , Humans , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mice , MicroRNAs/metabolism , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , RNA, Neoplasm/metabolism , Risk Factors
11.
Adv Biosyst ; 3(3): e1800328, 2019 03.
Article in English | MEDLINE | ID: mdl-32627398

ABSTRACT

An integrated, parallel-plate microfluidic device is engineered to interrogate and fractionate cells based on their adhesivity to a substrate surface functionalized with adhesive ligand in a tightly controlled flow environment to elucidate associated cell-intrinsic pathways. Wall shear stress levels and endothelial presentation of E-selectin are modeled after the inflamed vasculature microenvironment in order to simulate in vitro conditions under which in vivo hematogenous metastasis occurs. Based on elution time from the flow channel, the collection of separate fractions of cells-noninteracting and interacting-at high yields and viabilities enables multiple postperfusion analyses, including flow cytometry, in vivo metastasis modeling, and transcriptomic analysis. This platform enables the interrogation of flow-regulated cell molecular profiles, such as (co)expression levels of natively expressed selectin ligands sLex , CD44, and carcinoembryonic antigen, and cancer stem cell marker CD24. This additionally reveals E-selectin adhesivity exhibited by metastatic human colon carcinoma cells to be a transient phenotype. Facile and rapid, this methodology for unbiased, label free sorting of large populations of cells based on their adhesion in flow represents a method of studying flow-regulated adhesion in vitro for the identification of molecular drug targets for development as antimetastatic cancer therapeutics.


Subject(s)
Cell Adhesion Molecules , Cell Adhesion/physiology , Chromatography/instrumentation , Microfluidic Analytical Techniques/instrumentation , Neoplasm Metastasis/physiopathology , Animals , Cell Adhesion Molecules/analysis , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Colonic Neoplasms/chemistry , Colonic Neoplasms/metabolism , E-Selectin , Equipment Design , Humans , Mice , Mice, SCID , Phenotype
12.
Front Cell Dev Biol ; 6: 17, 2018.
Article in English | MEDLINE | ID: mdl-29541636

ABSTRACT

The tumor microenvironment is a dynamic landscape in which the physical and mechanical properties evolve dramatically throughout cancer progression. These changes are driven by enhanced tumor cell contractility and expansion of the growing tumor mass, as well as through alterations to the material properties of the surrounding extracellular matrix (ECM). Consequently, tumor cells are exposed to a number of different mechanical inputs including cell-cell and cell-ECM tension, compression stress, interstitial fluid pressure and shear stress. Oncogenes engage signaling pathways that are activated in response to mechanical stress, thereby reworking the cell's intrinsic response to exogenous mechanical stimuli, enhancing intracellular tension via elevated actomyosin contraction, and influencing ECM stiffness and tissue morphology. In addition to altering their intracellular tension and remodeling the microenvironment, cells actively respond to these mechanical perturbations phenotypically through modification of gene expression. Herein, we present a description of the physical changes that promote tumor progression and aggression, discuss their interrelationship and highlight emerging therapeutic strategies to alleviate the mechanical stresses driving cancer to malignancy.

13.
Mol Cancer Res ; 16(5): 777-790, 2018 05.
Article in English | MEDLINE | ID: mdl-29431617

ABSTRACT

Interstitial fluid pressure (IFP) presents a barrier to drug uptake in solid tumors, including the aggressive primary brain tumor glioblastoma (GBM). It remains unclear how fluid dynamics impacts tumor progression and can be targeted therapeutically. To address this issue, a novel telemetry-based approach was developed to measure changes in IFP during progression of GBM xenografts. Antisecretory factor (AF) is an endogenous protein that displays antisecretory effects in animals and patients. Here, endogenous induction of AF protein or exogenous administration of AF peptide reduced IFP and increased drug uptake in GBM xenografts. AF inhibited cell volume regulation of GBM cells, an effect that was phenocopied in vitro by the sodium-potassium-chloride cotransporter 1 (SLC12A2/NKCC1) inhibitor bumetanide. As a result, AF induced apoptosis and increased survival in GBM models. In vitro, the ability of AF to reduce GBM cell proliferation was phenocopied by bumetanide and NKCC1 knockdown. Next, AF's ability to sensitize GBM cells to the alkylating agent temozolomide, standard of care in GBM patients, was evaluated. Importantly, combination of AF induction and temozolomide treatment blocked regrowth in GBM xenografts. Thus, AF-mediated inhibition of cell volume regulation represents a novel strategy to increase drug uptake and improve outcome in GBM. Mol Cancer Res; 16(5); 777-90. ©2018 AACR.


Subject(s)
Glioblastoma/therapy , Animals , Cell Line, Tumor , Cell Proliferation , Cell Size , Disease Progression , Glioblastoma/pathology , Humans , Mice , Mice, Nude
14.
Nat Cell Biol ; 18(12): 1336-1345, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27820599

ABSTRACT

Increased overall survival for patients with glioma brain tumours is associated with mutations in the metabolic regulator isocitrate dehydrogenase 1 (IDH1). Gliomas develop within a mechanically challenged microenvironment that is characterized by a dense extracellular matrix (ECM) that compromises vascular integrity to induce hypoxia and activate HIF1α. We found that glioma aggression and patient prognosis correlate with HIF1α levels and the stiffness of a tenascin C (TNC)-enriched ECM. Gain- and loss-of-function xenograft manipulations demonstrated that a mutant IDH1 restricts glioma aggression by reducing HIF1α-dependent TNC expression to decrease ECM stiffness and mechanosignalling. Recurrent IDH1-mutant patient gliomas had a stiffer TNC-enriched ECM that our studies attributed to reduced miR-203 suppression of HIF1α and TNC mediated via a tension-dependent positive feedback loop. Thus, our work suggests that elevated ECM stiffness can independently foster glioblastoma aggression and contribute to glioblastoma recurrence via bypassing the protective activity of IDH1 mutational status.


Subject(s)
Brain Neoplasms/pathology , Feedback, Physiological , Glioblastoma/metabolism , Glioblastoma/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isocitrate Dehydrogenase/metabolism , Tenascin/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Extracellular Matrix/metabolism , Fluorescent Antibody Technique , Humans , Isocitrate Dehydrogenase/genetics , Mechanotransduction, Cellular , MicroRNAs/metabolism , Mutation/genetics , Neoplasm Invasiveness , Signal Transduction , Xenograft Model Antitumor Assays
15.
Nat Med ; 22(5): 497-505, 2016 05.
Article in English | MEDLINE | ID: mdl-27089513

ABSTRACT

Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-ß (TGF-ß) signaling have high epithelial STAT3 activity and develop stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-ß signaling and elevated ß1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-ß signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors and highlight STAT3 and mechanics as key drivers of this phenotype.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Extracellular Matrix/metabolism , Integrin beta Chains/metabolism , Pancreatic Neoplasms/genetics , STAT3 Transcription Factor/metabolism , Transforming Growth Factor beta/metabolism , Animals , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Chromatography, Liquid , Collagen/metabolism , Disease Models, Animal , Disease Progression , Extracellular Matrix/pathology , Fibrosis , Genotype , Humans , Mice , Microscopy, Atomic Force , Mutation , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Proteomics , Proto-Oncogene Proteins p21(ras)/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction , Smad4 Protein/genetics , Survival Rate , Tandem Mass Spectrometry , Tumor Microenvironment
16.
J Cell Biol ; 212(6): 707-19, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26975850

ABSTRACT

Breast tumor progression is accompanied by changes in the surrounding extracellular matrix (ECM) that increase stiffness of the microenvironment. Mammary epithelial cells engage regulatory pathways that permit dynamic responses to mechanical cues from the ECM. Here, we identify a SLIT2/ROBO1 signaling circuit as a key regulatory mechanism by which cells sense and respond to ECM stiffness to preserve tensional homeostasis. We observed that Robo1 ablation in the developing mammary gland compromised actin stress fiber assembly and inhibited cell contractility to perturb tissue morphogenesis, whereas SLIT2 treatment stimulated Rac and increased focal adhesion kinase activity to enhance cell tension by maintaining cell shape and matrix adhesion. Further investigation revealed that a stiff ECM increased Robo1 levels by down-regulating miR-203. Consistently, patients whose tumor expressed a low miR-203/high Robo1 expression pattern exhibited a better overall survival prognosis. These studies show that cells subjected to stiffened environments up-regulate Robo1 as a protective mechanism that maintains cell shape and facilitates ECM adherence.


Subject(s)
Cell Adhesion/genetics , Cell Shape/genetics , Extracellular Matrix/genetics , Focal Adhesion Kinase 1/genetics , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , rac GTP-Binding Proteins/genetics , Animals , Cell Adhesion/physiology , Cell Line, Tumor , Cell Shape/physiology , Cellular Microenvironment/genetics , Cellular Microenvironment/physiology , Down-Regulation/genetics , Epithelial Cells/physiology , Extracellular Matrix/physiology , Homeostasis/genetics , Homeostasis/physiology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mammary Glands, Human/physiology , Mice , Morphogenesis/genetics , Morphogenesis/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Roundabout Proteins
17.
Nat Rev Mol Cell Biol ; 15(12): 771-85, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25370693

ABSTRACT

The biochemical and biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. The molecules that are associated with the ECM of each tissue, including collagens, proteoglycans, laminins and fibronectin, and the manner in which they are assembled determine the structure and the organization of the resultant ECM. The product is a specific ECM signature that is comprised of unique compositional and topographical features that both reflect and facilitate the functional requirements of the tissue.


Subject(s)
Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Animals , Basement Membrane/chemistry , Basement Membrane/metabolism , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Humans , Neurons/cytology , Proteoglycans/metabolism
18.
EMBO Rep ; 15(12): 1243-53, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25381661

ABSTRACT

The extracellular matrix regulates tissue development and homeostasis, and its dysregulation contributes to neoplastic progression. The extracellular matrix serves not only as the scaffold upon which tissues are organized but provides critical biochemical and biomechanical cues that direct cell growth, survival, migration and differentiation and modulate vascular development and immune function. Thus, while genetic modifications in tumor cells undoubtedly initiate and drive malignancy, cancer progresses within a dynamically evolving extracellular matrix that modulates virtually every behavioral facet of the tumor cells and cancer-associated stromal cells. Hanahan and Weinberg defined the hallmarks of cancer to encompass key biological capabilities that are acquired and essential for the development, growth and dissemination of all human cancers. These capabilities include sustained proliferation, evasion of growth suppression, death resistance, replicative immortality, induced angiogenesis, initiation of invasion, dysregulation of cellular energetics, avoidance of immune destruction and chronic inflammation. Here, we argue that biophysical and biochemical cues from the tumor-associated extracellular matrix influence each of these cancer hallmarks and are therefore critical for malignancy. We suggest that the success of cancer prevention and therapy programs requires an intimate understanding of the reciprocal feedback between the evolving extracellular matrix, the tumor cells and its cancer-associated cellular stroma.


Subject(s)
Extracellular Matrix/metabolism , Neoplasms/metabolism , Extracellular Matrix/pathology , Humans , Models, Biological , Neoplasm Metastasis/pathology , Neovascularization, Pathologic/metabolism
19.
Nature ; 511(7509): 319-25, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25030168

ABSTRACT

Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function.


Subject(s)
Glycocalyx/metabolism , Glycoproteins/metabolism , Integrins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Animals , Breast/cytology , Breast/metabolism , Breast/pathology , Cell Line, Tumor , Cell Proliferation , Cell Survival , Fibroblasts , Glycocalyx/chemistry , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Integrins/chemistry , Mice , Molecular Targeted Therapy , Mucin-1/metabolism , Neoplasm Metastasis/pathology , Neoplastic Cells, Circulating , Protein Binding , Receptors, Cell Surface
20.
Nat Med ; 20(4): 360-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24633304

ABSTRACT

Tissue mechanics regulate development and homeostasis and are consistently modified in tumor progression. Nevertheless, the fundamental molecular mechanisms through which altered mechanics regulate tissue behavior and the clinical relevance of these changes remain unclear. We demonstrate that increased matrix stiffness modulates microRNA expression to drive tumor progression through integrin activation of ß-catenin and MYC. Specifically, in human and mouse tissue, increased matrix stiffness induced miR-18a to reduce levels of the tumor suppressor phosphatase and tensin homolog (PTEN), both directly and indirectly by decreasing levels of homeobox A9 (HOXA9). Clinically, extracellular matrix stiffness correlated directly and significantly with miR-18a expression in human breast tumor biopsies. miR-18a expression was highest in basal-like breast cancers in which PTEN and HOXA9 levels were lowest, and high miR-18a expression predicted poor prognosis in patients with luminal breast cancers. Our findings identify a mechanically regulated microRNA circuit that can promote malignancy and suggest potential prognostic roles for HOXA9 and miR-18a levels in stratifying patients with luminal breast cancers.


Subject(s)
Elasticity , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , PTEN Phosphohydrolase/metabolism , Tumor Microenvironment , Animals , Breast Neoplasms , Cell Line , Disease Progression , Extracellular Matrix/genetics , Female , Homeodomain Proteins/metabolism , Humans , Mammary Glands, Animal/metabolism , Mammary Glands, Human/metabolism , Mice , MicroRNAs/physiology , Neoplasm Metastasis/genetics , Oncogene Protein p55(v-myc)/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...