Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793897

ABSTRACT

Experimental validation of computational simulations is important because it provides empirical evidence to verify the accuracy and reliability of the simulated results. This validation ensures that the simulation accurately represents real-world phenomena, increasing confidence in the model's predictive capabilities and its applicability to practical scenarios. The use of musculoskeletal models in orthopedic surgery allows for objective prediction of postoperative function and optimization of results for each patient. To ensure that simulations are trustworthy and can be used for predictive purposes, comparing simulation results with experimental data is crucial. Although progress has been made in obtaining 3D bone geometry and estimating contact forces, validation of these predictions has been limited due to the lack of direct in vivo measurements and the economic and ethical constraints associated with available alternatives. In this study, an existing commercial surgical training station was transformed into a sensorized test bench to replicate a knee subject to a total knee replacement. The original knee inserts of the training station were replaced with personalized 3D-printed bones incorporating their corresponding implants, and multiple sensors with their respective supports were added. The recorded movement of the patella was used in combination with the forces recorded by the pressure sensor and the load cells, to validate the results obtained from the simulation, which was performed by means of a multibody dynamics formulation implemented in a custom-developed library. The utilization of 3D-printed models and sensors facilitated cost-effective and replicable experimental validation of computational simulations, thereby advancing orthopedic surgery while circumventing ethical concerns.


Subject(s)
Computer Simulation , Patella , Printing, Three-Dimensional , Humans , Patella/physiology , Biomechanical Phenomena/physiology , Knee Joint/physiology , Arthroplasty, Replacement, Knee
2.
Front Bioeng Biotechnol ; 12: 1347720, 2024.
Article in English | MEDLINE | ID: mdl-38481569

ABSTRACT

Introduction: Poor patellar tracking can result in painful contact pressures, patella subluxation, or dislocation. The use of musculoskeletal models and simulations in orthopedic surgeries allows for objective predictions of post-treatment function, empowering clinicians to explore diverse treatment options for patients. Although a promising approach for managing knee surgeries, the high computational cost of the Finite Element Method hampers its clinical usability. In anticipation of minimal elastic deformations in the involved bodies, the exploration of the Multibody Dynamics approach emerged as a viable solution, providing a computationally efficient methodology to address clinical concerns related to the knee joint. Methods: This work, with a focus on high-performance computing, achieved the simulation of the patellofemoral joint through rigid-body multibody dynamics formulations. A comparison was made between two collision detection algorithms employed in the simulation of contact between the patellar and femoral implants: a generic mesh-to-mesh collision detection algorithm, which identifies potential collisions between bodies by checking for proximity or overlap between their discretized mesh surface elements, and an analytical contact algorithm, which uses a mathematical model to provide closed-form solutions for specific contact problems, but cannot handle arbitrary geometries. In addition, different digital twins (3D model geometries) of the femoral implant were compared. Results: Computational efficiency was considered, and histories of position, orientation, and contact force of the patella during the motion were compared with experimental measurements obtained from a sensorized 3D-printed test bench under pathological and treatment scenarios. The best results were achieved through a purely analytical contact detection algorithm, allowing for clinical usability and optimization of clinical outcomes.

3.
Front Neurorobot ; 13: 55, 2019.
Article in English | MEDLINE | ID: mdl-31379551

ABSTRACT

Determination of muscle energy expenditure by computer modeling and analysis is of great interest to estimate the whole body energy consumption, while avoiding the complex character of in vivo experimental measurements for some subjects or activities. In previous papers, the authors presented optimization methods for estimating muscle forces in spinal-cord-injured (SCI) subjects performing crutch-assisted gait. Starting from those results, this work addresses the estimation of the whole body energy consumption of a SCI subject during crutch-assisted gait using the models of human muscle energy expenditure proposed by Umberger and Bhargava. First, the two methods were applied to the gait of a healthy subject, and experimentally validated by means of a portable gas analyzer in several 5-min tests. Then, both methods were used for a SCI subject during crutch-assisted gait wearing either a passive or an active knee-ankle foot orthosis (KAFO), in order to compare the energetic efficiency of both gait-assistive devices. Improved gait pattern and reduced energy consumption were the results of using the actuated gait device. Computer modeling and analysis can provide valuable indicators, as energy consumption, to assess the impact of assistive devices in patients without the need for long and uncomfortable experimental tests.

SELECTION OF CITATIONS
SEARCH DETAIL
...