Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 15(3): 1597-602, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25615444

ABSTRACT

We propose a set of design rules with a model Hamiltonian that allows electrons to form attracting pairs through the exploitation of a new combination of resonant band alignment and Coulombic repulsion. The pair bands and single particle bands in various lattices are calculated and compared in energy, and regions of net attraction are identified. This work provides guidelines for the construction of molecular systems, nanocrystals, and nanoparticle arrays with the potential for superconductivity.

2.
J Am Chem Soc ; 136(7): 2876-84, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24460057

ABSTRACT

Natural photosynthetic complexes accomplish the rapid conversion of photoexcitations into spatially separated electrons and holes through precise hierarchical ordering of chromophores and redox centers. In contrast, organic photovoltaic (OPV) cells are poorly ordered, utilize only two different chemical potentials, and the same materials that absorb light must also transport charge; yet, some OPV blends achieve near-perfect quantum efficiency. Here we perform electronic structure calculations on large clusters of functionalized fullerenes of different size and ordering, predicting several features of the charge generation process, outside the framework of conventional theories but clearly observed in ultrafast electro-optical experiments described herein. We show that it is the resonant coupling of photogenerated singlet excitons to a high-energy manifold of fullerene electronic states that enables efficient charge generation, bypassing localized charge-transfer states. In contrast to conventional views, our findings suggest that fullerene cluster size, concentration, and dimensionality control charge generation efficiency, independent of exciton delocalization.

3.
J Chem Phys ; 138(4): 044112, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23387573

ABSTRACT

We use a one-dimensional tight binding model with an impurity site characterized by electron-vibration coupling, to describe electron transfer and localization at zero temperature, aiming to examine the process of polaron formation in this system. In particular we focus on comparing a semiclassical approach that describes nuclear motion in this many vibronic-states system on the Ehrenfest dynamics level to a numerically exact fully quantum calculation based on the Bonca-Trugman method [J. Bonca and S. A. Trugman, Phys. Rev. Lett. 75, 2566 (1995)]. In both approaches, thermal relaxation in the nuclear subspace is implemented in equivalent approximate ways: In the Ehrenfest calculation the uncoupled (to the electronic subsystem) motion of the classical (harmonic) oscillator is simply damped as would be implied by coupling to a Markovian zero temperature bath. In the quantum calculation, thermal relaxation is implemented by augmenting the Liouville equation for the oscillator density matrix with kinetic terms that account for the same relaxation. In both cases we calculate the probability to trap the electron by forming a polaron and the probability that it escapes to infinity. Comparing these calculations, we find that while both result in similar long time yields for these processes, the Ehrenfest-dynamics based calculation fails to account for the correct time scale for the polaron formation. This failure results, as usual, from the fact that at the early stage of polaron formation the classical nuclear dynamics takes place on an unphysical average potential surface that reflects the distributed electronic population in the system, while the quantum calculation accounts fully for correlations between the electronic and vibrational subsystems.

4.
J Phys Chem A ; 117(29): 5899-908, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23134639

ABSTRACT

We have studied the electron transfer occurring in the photosystem I (PSI) reaction center from the special pair to the first iron-sulfur cluster. Electronic structure calculations performed at the DFT level were employed to determine the on-site energies of the fragments comprising PSI, as well as the charge transfer integrals between neighboring pairs. This electronic Hamiltonian was then used to compute the charge transfer dynamics, using the stochastic surrogate Hamiltonian approach to account for the coherent propagation of the electronic density but also for its energy relaxation and decoherence. These simulations give reasonable transfer time ranging from subpicoseconds to nanoseconds and predict coherent oscillations for several picoseconds. Due to these long-lasting coherences, the propagation of the electronic density can be enhanced or inhibited by quantum interferences. The impact of random fluctuations and asymmetries on these interferences is then discussed. Random fluctuations lead to a classical transport where both constructive and destructive quantum interferences are suppressed. Finally it is shown that an energy difference of 0.15 eV between the on-site energies of the phylloquinones leads to a highly efficient electron transfer even in presence of strong random fluctuations.


Subject(s)
Photosystem I Protein Complex/chemistry , Quantum Theory , Electron Transport , Electrons , Iron/chemistry , Models, Molecular , Protein Conformation , Sulfur/chemistry
5.
J Phys Chem Lett ; 4(5): 704-9, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-26281922

ABSTRACT

The collection of charge carriers is a fundamental step in the photovoltaic conversion process. In disordered organic films, low mobility and disorder can make collection the performance-limiting step in energy conversion. We derive two analytic relationships for carrier collection efficiency in organic photovoltaics that account for the presence or absence of carrier-selective electrodes. These equations directly include drift and diffusive carrier transport in the device active layers and account for possible losses from Langevin and Shockley-Read-Hall recombination mechanisms. General relationships among carrier mobility, contact selectivity, recombination processes, and organic photovoltaic figures of merit are established. Our results suggest that device collection efficiency remains mobility-limited for many materials systems, and a renewed emphasis should be placed on materials' purity.

SELECTION OF CITATIONS
SEARCH DETAIL
...