Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 625: 122064, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35952802

ABSTRACT

The improved drug delivery systems (DDS) are needed for the targeted delivery of their therapeutic cargo (biologically active protein/peptide molecules, nucleic acids, vaccines, etc.) to diseased cells. Thus, we aimed to develop magnetite nanoparticles (Fe3O4), stabilized with polyethylene glycol (PEG) and decorated (surface-functionalized) with folic acid (FA) (Fe3O4@PEG@FA) to ensure targeted internalization in cells expressing the folic acid receptors (FR). The Fe3O4@PEG@FA nanoparticles were synthesized by co-precipitation in a one-pot methodology. Curcumin (Curc), a polyphenol with anti-tumoral activity, was loaded on the nanoparticles, and FA-targeted (Fe3O4@PEG@FA@Curc) and non-targeted (Fe3O4@PEG@Curc) systems were obtained. The internalization of Fe3O4@PEG@FA@Curc and Fe3O4@PEG@Curc nanoparticles was determined in two tumor cell lines, the FR-positive MCF-7 human breast carcinoma cell line and A549 human lung adenocarcinoma cell line, expressing a low level of FR. The results showed that MCF-7 cells internalize FA-functionalized nanoparticles to a greater extent than non-targeted ones and also than A549 cells. The competitive studies performed in the presence of FA in excess suggested that internalization is an FR-dependent process. The increased internalization of Fe3O4@PEG@FA@Curc nanoparticles in MCF-7 cells is correlated with increased cytotoxicity in this cell line compared to A549 cells. In conclusion, the FA-functionalized magnetic systems can ensure a better internalization of the nanoparticles and can be used to deliver various therapeutic agents, both in cancer treatment and also in the treatment of other inflammation-associated diseases such as rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, Crohn's disease or atherosclerosis.


Subject(s)
Curcumin , Magnetite Nanoparticles , Nanoparticles , Cell Line, Tumor , Curcumin/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems/methods , Folic Acid/chemistry , Humans , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry
2.
J Hazard Mater ; 235-236: 108-15, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22858131

ABSTRACT

Explosions of gaseous ethylene-air mixtures with various concentrations between 3.0 and 14.0 vol.% and initial pressures between 0.20 and 1.10 bar were experimentally investigated at ambient initial temperature, using several elongated cylindrical vessels with length to diameter ratio between 1.0 and 2.4. The maximum explosion pressures p(max), the explosion times θ(max), the maximum rates of pressure rise, (dp/dt)(max) and the severity factors of centrally ignited explosions K(G) are examined in comparison with similar data obtained in a spherical vessel. The measured deflagration indices are strongly influenced by the length to diameter ratio of the vessels, initial pressure and composition of the flammable mixtures. Even when important heat losses are present, linear correlations p(max)=f(p(0)) and (dp/dt)(max)=f(p(0)) were found for all examined fuel-air mixtures, in all closed vessels. The heat losses appearing in the last stage of explosions occurring in asymmetrical vessels were estimated from the differences between the experimental and adiabatic maximum explosion pressures. These heat losses are higher when the asymmetry ratio L/D is higher and were found to depend linearly on the initial pressure.


Subject(s)
Ethylenes/chemistry , Explosions , Air , Pressure , Temperature
3.
J Hazard Mater ; 135(1-3): 58-65, 2006 Jul 31.
Article in English | MEDLINE | ID: mdl-16386834

ABSTRACT

An experimental study on pressure evolution during closed vessel explosions of several gaseous fuel-air mixtures was performed, at various initial pressures within 0.3-1.2 bar and ambient initial temperature. Explosion pressures and explosion times are reported for methane-, n-pentane-, n-hexane-, propene-, butene-, butadiene-, cyclohexane- and benzene-air mixtures. The explosion pressures measured in a spherical vessel (Phi=10 cm) and in three cylindrical vessels with different diameter/height ratios are examined in comparison with the adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, fuel concentration and heat losses during propagation (determined by the size and shape of the explosion vessel and by the position of the ignition source) on explosion pressures and explosion times are discussed for some of the examined systems.


Subject(s)
Air , Explosions , Hydrocarbons/chemistry , Pressure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...