Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(7)2023 07 06.
Article in English | MEDLINE | ID: mdl-37510307

ABSTRACT

BACKGROUND: Current carrier screening methods do not identify a proportion of carriers that may have children affected by spinal muscular atrophy (SMA). Additional genetic data is essential to inform accurate risk assessment and genetic counselling of SMA carriers. This study aims to quantify the various genotypes among parents of children with SMA. METHOD: A retrospective cohort study was undertaken at Sydney Children's Hospital Network, the major SMA referral centre for New South Wales, Australia. Participants included children with genetically confirmed SMA born between 2005 and 2021. Data was collected on parent genotype inclusive of copy number of SMN1 exons 7 and 8. The number of SMN2 exon 7 copies were recorded for the affected children. Descriptive statistics were used to determine the proportion of carriers of 2+0 genotype classified as silent carriers. Chi-square test was used to correlate the association between parents with a heterozygous SMN1 exon 7 deletion and two copies of exon 8 and ≥3 SMN2 copy number in the proband. RESULTS: SMA carrier testing was performed in 118/154 (76.6%) parents, incorporating 59 probands with homozygous SMN1 deletions and one proband with compound heterozygote pathogenic variants. Among parents with a child with SMA, 7.6% had two copies of SMN1 exon 7. When only probands with a homozygous SMN1 exon 7 deletion were included, 6.9% of parents had two copies of SMN1 exon 7. An association was observed between heterozygous deletion of SMN1 exon 7 with two copies of exon 8 in a parent and ≥3 SMN2 copy number in the affected proband (p = 0.07). CONCLUSIONS: This study confirmed a small but substantial proportion of silent carriers not identified by conventional screening within an Australian context. Accordingly, the effectiveness of carrier screening for SMA is linked with genetic counselling to enable health literacy regarding high and low risk results and is complemented by new-born screening and maintaining clinical awareness for SMA. Gene conversion events may underpin the associations between parent carrier status and proband SMN2 copy number.


Subject(s)
Muscular Atrophy, Spinal , Child , Humans , Australia , Exons/genetics , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Parents , Retrospective Studies , Survival of Motor Neuron 1 Protein/genetics
2.
Neurol Genet ; 7(1): e554, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33977140

ABSTRACT

OBJECTIVE: To describe the diagnostic utility of whole-genome sequencing and RNA studies in boys with suspected dystrophinopathy, for whom multiplex ligation-dependent probe amplification and exomic parallel sequencing failed to yield a genetic diagnosis, and to use remnant normal DMD splicing in 3 families to define critical levels of wild-type dystrophin bridging clinical spectrums of Duchenne to myalgia. METHODS: Exome, genome, and/or muscle RNA sequencing was performed for 7 males with elevated creatine kinase. PCR of muscle-derived complementary DNA (cDNA) studied consequences for DMD premessenger RNA (pre-mRNA) splicing. Quantitative Western blot was used to determine levels of dystrophin, relative to control muscle. RESULTS: Splice-altering intronic single nucleotide variants or structural rearrangements in DMD were identified in all 7 families. Four individuals, with abnormal splicing causing a premature stop codon and nonsense-mediated decay, expressed remnant levels of normally spliced DMD mRNA. Quantitative Western blot enabled correlation of wild-type dystrophin and clinical severity, with 0%-5% dystrophin conferring a Duchenne phenotype, 10% ± 2% a Becker phenotype, and 15% ± 2% dystrophin associated with myalgia without manifesting weakness. CONCLUSIONS: Whole-genome sequencing relied heavily on RNA studies to identify DMD splice-altering variants. Short-read RNA sequencing was regularly confounded by the effectiveness of nonsense-mediated mRNA decay and low read depth of the giant DMD mRNA. PCR of muscle cDNA provided a simple, yet informative approach. Highly relevant to genetic therapies for dystrophinopathies, our data align strongly with previous studies of mutant dystrophin in Becker muscular dystrophy, with the collective conclusion that a fractional increase in levels of normal dystrophin between 5% and 20% is clinically significant.

3.
Neuromuscul Disord ; 29(12): 913-919, 2019 12.
Article in English | MEDLINE | ID: mdl-31706698

ABSTRACT

A precise genetic diagnosis of a dystrophinopathy has far-reaching implications for affected boys and their families. We present three boys with DMD single nucleotide variants associated with Becker muscular dystrophy presenting with myalgia, reduced exercise capacity, neurodevelopmental symptoms and elevated creatine kinase. The DMD variants were difficult to classify: AIII:1 a synonymous variant in exon 13 c.1602G>A, p.Lys534Lys; BIII:1 an essential splice-site variant in intron 33 c.4674+1G>A, and CII:1 a missense mutation within the cysteine-rich domain, exon 66 c.9619T>C, p.Cys3207Arg. Complementary DNA (cDNA) analysis using muscle-derived mRNA established splice-altering effects of variants for AIII:1 and BIII:1, and normal splicing in CII:1. Western blot analysis demonstrated mildly to moderately reduced dystrophin levels (17.6 - 36.1% the levels of controls), supporting dystrophinopathy as a probable diagnosis. These three cases highlight the diagnostic utility of muscle biopsy for mRNA studies and western blot to investigate DMD variants of uncertain pathogenicity, by exploring effects on splicing and dystrophin protein levels.


Subject(s)
Blood Proteins/genetics , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Mutation, Missense , RNA Splicing , Adolescent , Adult , Biopsy , Creatine Kinase/blood , Diagnosis, Differential , Family , Humans , Male , Muscular Dystrophy, Duchenne/diagnosis
4.
PLoS One ; 5(1): e8803, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20098710

ABSTRACT

BACKGROUND: A significant component of the variation in cognitive disability that is observed in Duchenne muscular dystrophy (DMD) is known to be under genetic regulation. In this study we report correlations between standardised measures of intelligence and mutational class, mutation size, mutation location and the involvement of dystrophin isoforms. METHODS AND RESULTS: Sixty two male subjects were recruited as part of a study of the cognitive spectrum in boys with DMD conducted at the Sydney Children's Hospital (SCH). All 62 children received neuropsychological testing from a single clinical psychologist and had a defined dystrophin gene (DMD) mutation; including DMD gene deletions, duplications and DNA point mutations. Full Scale Intelligence Quotients (FSIQ) in unrelated subjects with the same mutation were found to be highly correlated (r = 0.83, p = 0.0008), in contrast to results in previous publications. In 58 cases (94%) it was possible to definitively assign a mutation as affecting one or more dystrophin isoforms. A strong association between the risk of cognitive disability and the involvement of groups of DMD isoforms was found. In particular, improvements in the correlation of FSIQ with mutation location were identified when a new classification system for mutations affecting the Dp140 isoform was implemented. SIGNIFICANCE: These data represent one of the largest studies of FSIQ and mutational data in DMD patients and is among the first to report on a DMD cohort which has had both comprehensive mutational analysis and FSIQ testing through a single referral centre. The correlation between FSIQ results with the location of the dystrophin gene mutation suggests that the risk of cognitive deficit is a result of the cumulative loss of central nervous system (CNS) expressed dystrophin isoforms, and that correct classification of isoform involvement results in improved estimates of risk.


Subject(s)
Cognition Disorders/genetics , Dystrophin/genetics , Muscular Dystrophy, Duchenne/genetics , Mutation , Child , Humans , Intelligence , Male , Muscular Dystrophy, Duchenne/psychology , Neuropsychological Tests
5.
J Med Genet ; 44(6): 368-72, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17259292

ABSTRACT

BACKGROUND: Recent methodological advances have improved the detection rate for dystrophin mutations, but there are no published studies that have measured the clinical utility of these protocols for carrier detection compared with conventional carrier testing protocols that use pedigree, serum creatine kinase levels and linkage analysis. METHODS AND SUBJECTS: The clinical utility of a combined mutation detection protocol was measured. It involved quantitative PCR procedures followed by DNA sequence analysis for the identification of dystrophin mutation carriers in 2101 women at risk of being carriers from 348 mutation-known Duchenne or Becker muscular dystrophy pedigrees. RESULTS: The combined mutation detection protocol identified a mutation in 96% and 82% of index cases of Duchenne muscular dystrophy and Becker muscular dystrophy, respectively. An additional 692 (33%) potential carriers were correctly classified by the combined mutation detection protocol compared with pedigree, serum creatine kinase levels and linkage analysis. Significantly lower mutation carrier rates were identified in the mothers of isolated cases with deletion mutations than predicted from theoretical considerations, but these findings were not confirmed for duplication and DNA sequence mutations. CONCLUSIONS: There are significant clinical benefits to be gained from a combined mutation detection protocol for carrier detection. It is recommended that mutation-specific carrier frequencies for the different classes of dystrophin mutations should be taken into account in genetic counselling practice.


Subject(s)
Genetic Carrier Screening , Heterozygote , Muscular Dystrophy, Duchenne/genetics , Mutation/genetics , Female , Humans , Male , Mothers , Muscular Dystrophy, Duchenne/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...