Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 12): 1897-1901, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31871754

ABSTRACT

After crystallization during ionothermal syntheses in phospho-nium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [tri-ammonium dialuminum tris-(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A 3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004 ▸). Nature, 430, 1012-1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms.

2.
Chemistry ; 24(67): 17779-17787, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30246281

ABSTRACT

Zeolites are porous aluminosilicate materials utilized in a variety of sorption, separation, and catalytic applications. The oil refining industry in particular has seen a number of significant advances due to the introduction of new technologies enabled by new zeolites. Of particular importance are zeolites with 10- or 12-membered ring pores, resulting in pore shapes and sizes appropriate for the interaction with small hydrocarbon molecules. Here, the synthesis of a new zeolite UZM-55 is reported and the idealized structure thereof is presented. The most complex structure solved to date, UZM-55 possesses a large triclinic unit cell containing 52 T-sites. The material uniquely contains both 10- and 12-membered ring pores in a single, undulating one-dimensional channel, the first example in a zeolitic material of multiple delimiting rings in a single channel. This discovery opens new opportunities in shape-selective adsorption and catalysis. Demonstrated here is the unique adsorption behavior of UZM-55, shown both experimentally and computationally to adsorb one nonane molecule per unit cell in a linear conformation.

3.
J Am Chem Soc ; 136(24): 8606-13, 2014 Jun 18.
Article in English | MEDLINE | ID: mdl-24840643

ABSTRACT

Previous high-pressure experiments have shown that pressure-transmitting fluids composed of small molecules can be forced inside the pores of metal organic framework materials, where they can cause phase transitions and amorphization and can even induce porosity in conventionally nonporous materials. Here we report a combined high-pressure diffraction and computational study of the structural response to methanol uptake at high pressure on a scandium terephthalate MOF (Sc2BDC3, BDC = 1,4-benzenedicarboxylate) and its nitro-functionalized derivative (Sc2(NO2-BDC)3) and compare it to direct compression behavior in a nonpenetrative hydrostatic fluid, Fluorinert-77. In Fluorinert-77, Sc2BDC3 displays amorphization above 0.1 GPa, reversible upon pressure release, whereas Sc2(NO2-BDC)3 undergoes a phase transition (C2/c to Fdd2) to a denser but topologically identical polymorph. In the presence of methanol, the reversible amorphization of Sc2BDC3 and the displacive phase transition of the nitro-form are completely inhibited (at least up to 3 GPa). Upon uptake of methanol on Sc2BDC3, the methanol molecules are found by diffraction to occupy two sites, with preferential relative filling of one site compared to the other: grand canonical Monte Carlo simulations support these experimental observations, and molecular dynamics simulations reveal the likely orientations of the methanol molecules, which are controlled at least in part by H-bonding interactions between guests. As well as revealing the atomistic origin of the stabilization of these MOFs against nonpenetrative hydrostatic fluids at high pressure, this study demonstrates a novel high-pressure approach to study adsorption within a porous framework as a function of increasing guest content, and so to determine the most energetically favorable adsorption sites.

4.
J Am Chem Soc ; 135(42): 15763-73, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-23731240

ABSTRACT

Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO2 at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2(1)/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.

5.
J Am Chem Soc ; 134(42): 17628-42, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23013547

ABSTRACT

A series of univalent cation forms of zeolite Rho (M(9.8)Al(9.8)Si(38.2)O(96), M = H, Li, Na, K, NH(4), Cs) and ultrastabilized zeolite Rho (US-Rho) have been prepared. Their CO(2) adsorption behavior has been measured at 298 K and up to 1 bar and related to the structures of the dehydrated forms determined by Rietveld refinement and, for H-Rho and US-Rho, by solid state NMR. Additionally, CO(2) adsorption properties of the H-form of the silicoalumino-phosphate with the RHO topology and univalent cation forms of the zeolite ZK-5 were measured for comparison. The highest uptakes at 0.1 bar, 298 K for both Rho and ZK-5 were obtained on the Li-forms (Li-Rho, 3.4 mmol g(-1); Li-ZK-5, 4.7 mmol g(-1)). H- and US-Rho had relatively low uptakes under these conditions: extra-framework Al species do not interact strongly with CO(2). Forms of zeolite Rho in which cations occupy window sites between α-cages show hysteresis in their CO(2) isotherms, the magnitude of which (Na(+),NH(4)(+) < K(+) < Cs(+)) correlates with the tendency for cations to occupy double eight-membered ring sites rather than single eight-membered ring sites. Hysteresis is not observed for zeolites where cations do not occupy the intercage windows. In situ synchrotron X-ray diffraction of the CO(2) adsorption on Na-Rho at 298 K identifies the adsorption sites. The framework structure of Na-Rho "breathes" as CO(2) is adsorbed and desorbed and its desorption kinetics from Na-Rho at 308 K have been quantified by the Zero Length Column chromatographic technique. Na-Rho shows much higher CO(2)/C(2)H(6) selectivity than Na-ZK-5, as determined by single component adsorption, indicating that whereas CO(2) can diffuse readily through windows containing Na(+) cations, ethane cannot.

6.
Chem Commun (Camb) ; 48(53): 6690-2, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22644158

ABSTRACT

A novel form of mixed-linker ZIF with the RHO topology is one of four zinc-imidazolate frameworks prepared with purine and 2-nitroimidazole. In this structure the linkers order to give a large pore solid with a high pore volume and an unusual symmetry and linker orientation. It possesses extra-framework zinc imidazolate units decorating the internal surface which can be removed to give high porosity.

7.
Dalton Trans ; 41(14): 3937-41, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22086355

ABSTRACT

The scandium analogue of the flexible terephthalate MIL-53 yields a novel closed pore structure upon removal of guest molecules which has unusual thermal behaviour and stepwise opening during CO(2) adsorption. By contrast, the nitro-functionalised MIL-53(Sc) cannot fully close and the structure possesses permanent porosity for CO(2).

8.
Inorg Chem ; 50(21): 10844-58, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21958382

ABSTRACT

The crystal structure of the small pore scandium terephthalate Sc(2)(O(2)CC(6)H(4)CO(2))(3) (hereafter Sc(2)BDC(3), BDC = 1,4-benzenedicarboxylate) has been investigated as a function of temperature and of functionalization, and its performance as an adsorbent for CO(2) has been examined. The structure of Sc(2)BDC(3) has been followed in vacuo over the temperature range 140 to 523 K by high resolution synchrotron X-ray powder diffraction, revealing a phase change at 225 K from monoclinic C2/c (low temperature) to Fddd (high temperature). The orthorhombic form shows negative thermal expansivity of 2.4 × 10(-5) K(-1): Rietveld analysis shows that this results largely from a decrease in the c axis, which is caused by carboxylate group rotation. (2)H wide-line and MAS NMR of deuterated Sc(2)BDC(3) indicates reorientation of phenyl groups via π flips at temperatures above 298 K. The same framework solid has also been prepared using monofunctionalized terephthalate linkers containing -NH(2) and -NO(2) groups. The structure of Sc(2)(NH(2)-BDC)(3) has been determined by Rietveld analysis of synchrotron powder diffraction at 100 and 298 K and found to be orthorhombic at both temperatures, whereas the structure of Sc(2)(NO(2)-BDC)(3) has been determined by single crystal diffraction at 298 K and Rietveld analysis of synchrotron powder diffraction at 100, 298, 373, and 473 K and is found to be monoclinic at all temperatures. Partial ordering of functional groups is observed in each structure. CO(2) adsorption at 196 and 273 K indicates that whereas Sc(2)BDC(3) has the largest capacity, Sc(2)(NH(2)-BDC)(3) shows the highest uptake at low partial pressure because of strong -NH(2)···CO(2) interactions. Remarkably, Sc(2)(NO(2)-BDC)(3) adsorbs 2.6 mmol CO(2) g(-1) at 196 K (P/P(0) = 0.5), suggesting that the -NO(2) groups are able to rotate to allow CO(2) molecules to diffuse along the narrow channels.

9.
J Am Chem Soc ; 133(5): 1266-9, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21214241

ABSTRACT

Crystalline microporous cobalt and nickel bisphosphonates with a hexagonal array of one-dimensional channels 1.8 nm in diameter have been prepared hydrothermally and provide the first example of the use of isoreticular chemistry in the synthesis of phosphonate metal-organic frameworks. The materials contain both physisorbed and coordinating water molecules in the as-prepared form, but these can be removed to give permanent extra-large microporosity, with pore volumes of up to 0.68 cm(3) g(-1), and coordinatively unsaturated sites, with concentrations up to 4.25 mmol g(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...