Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1798(8): 1577-85, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20434430

ABSTRACT

Alteration in mitochondrial fusion may regulate mitochondrial metabolism. Since the phospholipid cardiolipin (CL) is required for function of the mitochondrial respiratory chain, we examined the dynamics of CL synthesis in growing Hela cells immediately after and 12h post-fusion. Cells were transiently transfected with Mfn-2, to promote fusion, or Mfn-2 expressing an inactive GTPase for 24h and de novo CL biosynthesis was examined immediately after or 12h post-fusion. Western blot analysis confirmed elevated Mfn-2 expression and electron microscopic analysis revealed that Hela cell mitochondrial structure was normal immediately after and 12h post-fusion. Cells expressing Mfn-2 exhibited reduced CL de novo biosynthesis from [1,3-(3)H]glycerol immediately after fusion and this was due to a decrease in phosphatidylglycerol phosphate synthase (PGPS) activity and its mRNA expression. In contrast, 12h post-mitochondrial fusion cells expressing Mfn-2 exhibited increased CL de novo biosynthesis from [1,3-(3)H]glycerol and this was due to an increase in PGPS activity and its mRNA expression. Cells expressing Mfn-2 with an inactive GTPase activity did not exhibit alterations in CL de novo biosynthesis immediately after or 12h post-fusion. The Mfn-2 mediated alterations in CL de novo biosynthesis were not accompanied by alterations in CL or monolysoCL mass. [1-(14)C]Oleate incorporation into CL was elevated at 12h post-fusion indicating increased CL resynthesis. The reason for the increased CL resynthesis was an increased mRNA expression of tafazzin, a mitochondrial CL resynthesis enzyme. Ceramide-induced expression of PGPS in Hela cells or in CHO cells did not alter expression of Mfn-2 indicating that Mfn-2 expression is independent of altered CL synthesis mediated by elevated PGPS. In addition, Mfn-2 expression was not altered in Hela cells expressing phospholipid scramblase-3 or a disrupted scramblase indicating that proper CL localization within mitochondria is not essential for Mfn-2 expression. The results suggest that immediately post-mitochondrial fusion CL de novo biosynthesis is "slowed down" and then 12h post-fusion it is "upregulated". The implications of this are discussed.


Subject(s)
Cardiolipins/biosynthesis , Membrane Fusion/physiology , Mitochondrial Membranes/metabolism , Acyltransferases , Animals , Base Sequence , CHO Cells , Cricetinae , Cricetulus , DNA Primers/genetics , GTP Phosphohydrolases , Gene Expression , Glycerol/metabolism , HeLa Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Electron, Transmission , Mitochondrial Membranes/ultrastructure , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oleic Acid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Transfection , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...