Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 63(6): 393-399, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27653231

ABSTRACT

Biofouling is a process of ecological succession which begins with the attachment and colonization of micro-organisms to a submerged surface. For marine sensors and their housings, biofouling can be one of the principle limitations to long-term deployment and reliability. Conventional antibiofouling strategies using biocides can be hazardous to the environment, and therefore alternative chemical-free methods are preferred. In this study, custom-made testing assemblies were used to evaluate ultrasonic vibration as an antibiofouling process for marine sensor-housing materials over a 28-day time course. Microbial biofouling was measured based on (i) surface coverage, using fluorescence microscopy and (ii) bacterial 16S rDNA gene copies, using Quantitative polymerase chain reaction (PCR). Ultrasonic vibrations (20 KHz, 200 ms pulses at 2-s intervals; total power 16·08 W) significantly reduced the surface coverage on two plastics, poly(methyl methacrylate) and polyvinyl chloride (PVC) for up to 28 days. Bacterial gene copy number was similarly reduced, but the results were only statistically significant for PVC, which displayed the greatest overall resistance to biofouling, regardless of whether ultrasonic vibration was applied. Copper sheet, which has intrinsic biocidal properties was resistant to biofouling during the early stages of the experiment, but inhibited measurements made by PCR and generated inconsistent results later on. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, ultrasonic acoustic vibration is presented as a chemical-free, ecologically friendly alternative to conventional methods for the perturbation of microbial attachment to submerged surfaces. The results indicate the potential of an ultrasonic antibiofouling method for the disruption of microbial biofilms on marine sensor housings, which is typically a principle limiting factor in their long-term operation in the oceans. With increasing deployment of scientific apparatus in aquatic environments, including further offshore and for longer duration, the identification and evaluation of novel antifouling strategies that do not employ hazardous chemicals are widely sought.


Subject(s)
Aquatic Organisms/radiation effects , Bacteria/radiation effects , Biofilms/radiation effects , Biofouling/statistics & numerical data , Marine Biology/instrumentation , Ultrasonics/methods , Aquatic Organisms/growth & development , Bacteria/growth & development , Ultrasonics/instrumentation , Vibration
2.
Environ Sci Technol ; 46(13): 7293-300, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22646837

ABSTRACT

We present the design of an osmotic water sampler that is adapted to and validated in freshwater. The sample is drawn into and stored in a continuous narrow bore tube. This geometry and slow pump rate (which is temperature dependent: 0.8 mL/d at 4 °C to 2.0 mL/d at 28 °C) minimizes sample dispersion. We have implemented in situ time-stamping which enables accurate study of pump rates and sample time defining procedures in field deployments and comparison with laboratory measurements. Temperature variations are common in rivers, and without an accurate time-stamping, or other defining procedure, time of sampling is ambiguous. The sampler was deployed for one month in a river, and its performance was evaluated by comparison with manually collected samples. Samples were analyzed for major ions using Ion Chromatography and collision reaction Inductively Couple Mass Spectrometry. Despite the differences of the two sampling methods (osmotic sampler averages, while manual samples provide snapshots), the two data sets show good agreement (average R(2) ≈ 0.7), indicating the reliability of the sampler and at the same time highlighting the advantages of high frequency sampling in dynamic environments.


Subject(s)
Environmental Monitoring/instrumentation , Rivers/chemistry , Equipment Design , Osmosis , Reproducibility of Results
3.
Lab Chip ; 11(14): 2455-9, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21617822

ABSTRACT

We present a reliable technique for irreversibly bonding chemically inert Viton® membranes to PMMA and COC substrates to produce microfluidic devices with integrated elastomeric structures. Viton® is widely used in commercially available valves and has several advantages when compared to other elastomeric membranes currently utilised in microfluidic valves (e.g. PDMS), such as high solvent resistance, low porosity and high temperature tolerance. The bond strength was sufficient to withstand a fluid pressure of 400 kPa (PMMA/Viton®) and 310 kPa (COC/Viton®) before leakage or burst failure, which is sufficient for most microfluidic applications. We demonstrate and characterise on-chip pneumatic Viton® microvalves on PMMA and COC substrates. We also provide a detailed method for bonding fluorinated Viton® elastomer, a highly chemically compatible material, to PMMA and COC polymers. This allows the production of microfluidic devices able to handle a wide range of chemically harsh fluids and broadens the scope of the microfluidic platform concept.

4.
Anal Chem ; 83(12): 4814-21, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21563778

ABSTRACT

We present two microfluidic architectures (continuous flow and multiplexed stop flow) for miniaturized colorimetric nutrient sensors. These systems are compared with respect to the temporal response (for optimization of sampling rate) and reduction of reagent consumption. The continuous-flow system is capable of a sampling rate of 60 samples·h(-1), limited by Taylor dispersion. The novel multiplexed stop-flow (MSF) microsystem architecture is not limited by dispersion. A demonstration MSF system consisting of two stop-flow channels is presented. This requires 12.6 s to load each sample into a measurement channel and when scaled would be capable of a throughput of 285 h(-1) (with full color development). The MSF architecture is manufactured in PMMA/Viton/PMMA [where PMMA = poly(methyl methacrylate)], utilizes on-chip valving, and is scalable, thereby permitting sampling at much faster rates (subsecond). Either system is capable of remote deployment and continuous measurement of nutrient concentrations. The MSF system is particularly suited for applications requiring high temporal or spatial resolution; such as from moving vehicles.


Subject(s)
Colorimetry/methods , Microfluidic Analytical Techniques/methods , Biological Products/chemistry , Colorimetry/instrumentation , Microfluidic Analytical Techniques/instrumentation , Miniaturization , Polymethyl Methacrylate/chemistry
5.
IET Nanobiotechnol ; 1(6): 94-101, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18035910

ABSTRACT

Identification and analysis of phytoplankton is important for understanding the environmental parameters that are influenced by the oceans, including pollution and climate change. Phytoplanktons are studied at the single cell level using conventional light-field and fluorescence microscopy, but the technique is labour intensive. Flow cytometry enables rapid and quantitative measurements of single cells and is now used as an analytical tool in phytoplankton analysis. However, it has a number of drawbacks, including high cost and portability. We describe the fabrication of a microfluidic (lab-on-a-chip) device for high-speed analysis of single phytoplankton. The device measures fluorescence (at three wavelength ranges) and the electrical impedance of single particles. The system was tested using a mixture of three algae (Isochrysis Galbana, Rhodosorus m., Synechococcus sp.) and the results compared with predictions from theory and measurements using a commercial flow cytometer (BD FACSAria). It is shown that the microfluidic flow cytometer is able to distinguish and characterise these different taxa and that impedance spectroscopy enables measurement of phytoplankton biophysical properties.


Subject(s)
Flow Cytometry/methods , Microfluidic Analytical Techniques/methods , Phytoplankton/cytology , Flow Cytometry/instrumentation , Microfluidic Analytical Techniques/instrumentation , Nanotechnology/instrumentation , Nanotechnology/methods , Phaeophyceae/cytology , Phaeophyceae/growth & development , Phytoplankton/growth & development , Rhodophyta/cytology , Rhodophyta/growth & development , Synechococcus/cytology , Synechococcus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...