Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 11(1): 2382, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504867

ABSTRACT

A spectrophotometric approach for quantification of dissolved manganese (DMn) with 1-(2-pyridylazo)-2-naphthol (PAN) has been adapted for in situ application in coastal and estuarine waters. The analyser uses a submersible microfluidic lab-on-chip device, with low power (~ 1.5 W) and reagent consumption (63 µL per sample). Laboratory characterization showed an absorption coefficient of 40,838 ± 1127 L⋅mol-1⋅cm-1 and a detection limit of 27 nM, determined for a 34.6 mm long optical detection cell. Laboratory tests showed that long-term stability of the PAN reagent was achieved by addition of 4% v/v of a non-ionic surfactant (Triton-X100). To suppress iron (Fe) interferences with the PAN reagent, the Fe(III) masking agents deferoxamine mesylate (DFO-B) or disodium 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) were added and their Fe masking efficiencies were investigated. The analyser was tested during a deployment over several weeks in Kiel Fjord (Germany), with successful acquisition of 215 in situ data points. The time series was in good agreement with DMn concentrations determined from discretely collected samples analysed via inductively coupled plasma mass spectrometry (ICP-MS), exhibiting a mean accuracy of 87% over the full deployment duration (with an accuracy of > 99% for certain periods) and clear correlations to key hydrographic parameters.

2.
Talanta ; 136: 15-22, 2015 May.
Article in English | MEDLINE | ID: mdl-25702979

ABSTRACT

The redox sensitive trace metals iron and manganese are two important elements that help shape the biogeochemistry of aquatic systems and thus their measurement is important. Current laboratory methods are expensive, time consuming and cannot provide the spatial and temporal resolution needed to characterize these elements in natural waters. Here we describe the first autonomous analyzer capable of providing vertical profiles as well as routine in-situ determinations of dissolved Fe(II) and Mn in aquatic environments. The spectrophotometric sensor uses microfluidic methods (Lab-on-a-chip technology) and mixes reagents and samples using a novel in-cell diffusion process. Fe(II) and Mn can be measured with a frequency of up to 12 and 6 samples per hour respectively with limits of detection of 27nM for Fe(II), 2.1% precision (n=20), and 28nM for Mn, 2.4% precision (n=19). The device combines relatively low cost, low power usage, low reagent consumption, portability, and tolerance to pressures up to at least 170 bars, with high precision and accuracy. We present data from a successful demonstration of the sensor during a cruise to the Gotland and Landsort Deep Basins of the Baltic Sea.


Subject(s)
Iron/analysis , Manganese/analysis , Seawater/analysis , Microfluidics , Oceans and Seas
3.
Anal Chim Acta ; 786: 124-31, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23790301

ABSTRACT

High quality carbonate chemistry measurements are required in order to fully understand the dynamics of the oceanic carbonate system. Seawater pH data with good spatial and temporal coverage are particularly critical to apprehend ocean acidification phenomena and their consequences. There is a growing need for autonomous in situ instruments that measure pH on remote platforms. Our aim is to develop an accurate and precise autonomous in situ pH sensor for long term deployment on remote platforms. The widely used spectrophotometric pH technique is capable of the required high-quality measurements. We report a key step towards the miniaturization of a colorimetric pH sensor with the successful implementation of a simple microfluidic design with low reagent consumption. The system is particularly adapted to shipboard deployment: high quality data was obtained over a period of more than a month during a shipboard deployment in northwest European shelf waters, and less than 30 mL of indicator was consumed. The system featured a short term precision of 0.001 pH (n=20) and an accuracy within the range of a certified Tris buffer (0.004 pH). The quality of the pH system measurements have been checked using various approaches: measurements of certified Tris buffer, measurement of certified seawater for DIC and TA, comparison of measured pH against calculated pH from pCO2, DIC and TA during the cruise in northwest European shelf waters. All showed that our measurements were of high quality. The measurements were made close to in situ temperature (+0.2°C) in a sampling chamber which had a continuous flow of the ship's underway seawater supply. The optical set up was robust and relatively small due to the use of an USB mini-spectrometer, a custom made polymeric flow cell and an LED light source. The use of a three wavelength LED with detection that integrated power across the whole of each LED output spectrum indicated that low wavelength resolution detectors can be used instead of the current USB mini spectrophotometer. Artefacts due to the polychromatic light source and inhomogeneity in the absorption cell are shown to have a negligible impact on the data quality. The next step in the miniaturization of the sensor will be the incorporation of a photodiode as detector to replace the spectrophotometer.

SELECTION OF CITATIONS
SEARCH DETAIL