Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Brain Behav Immun ; 106: 233-246, 2022 11.
Article in English | MEDLINE | ID: mdl-36089217

ABSTRACT

PDL1 is a protein that induces immunosuppression by binding to PD1 expressed on immune cells. In line with historical studies, we found that membrane-bound PD1 expression was largely restricted to immune cells; PD1 was not detectable at either the mRNA or protein level in peripheral neurons using single neuron qPCR, immunolabeling and flow cytometry. However, we observed widespread expression of PDL1 in both sensory and sympathetic neurons that could have important implications for patients receiving immunotherapies targeting this pathway that include unexpected autonomic and sensory related effects. While signaling pathways downstream of PD1 are well established, little to no information is available regarding the intracellular signaling downstream of membrane-bound PDL1 (also known as reverse signaling). Here, we administered soluble PD1 to engage neuronally expressed PDL1 and found that PD1 significantly reduced nocifensive behaviors evoked by algogenic capsaicin. We used calcium imaging to examine the underlying neural mechanism of this reduction and found that exogenous PD1 diminished TRPV1-dependent calcium transients in dissociated sensory neurons. Furthermore, we observed a reduction in membrane expression of TRPV1 following administration of PD1. Exogenous PD1 had no effect on pain-related behaviors in sensory neuron specific PDL1 knockout mice. These data indicate that neuronal PDL1 activation is sufficient to modulate sensitivity to noxious stimuli and as such, may be an important homeostatic mechanism for regulating acute nociception.


Subject(s)
B7-H1 Antigen , Nociception , Animals , B7-H1 Antigen/metabolism , Calcium , Capsaicin , Mice , RNA, Messenger
2.
Pain ; 163(6): e774-e785, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34510139

ABSTRACT

ABSTRACT: Voltage-gated calcium channels in sensory neurons underlie processes ranging from neurotransmitter release to gene expression and remain a therapeutic target for the treatment of pain. Yet virtually all we know about voltage-gated calcium channels has been obtained through the study of rodent sensory neurons and heterologously expressed channels. To address this, high voltage-activated (HVA) Ca2+ currents in dissociated human and rat dorsal root ganglion neurons were characterized with whole-cell patch clamp techniques. The HVA currents from both species shared basic biophysical and pharmacological properties. However, HVA currents in human neurons differed from those in the rat in at least 3 potentially important ways: (1) Ca2+ current density was significantly smaller, (2) the proportion of nifedipine-sensitive currents was far greater, and (3) a subpopulation of human neurons displayed relatively large constitutive current inhibition. These results highlight the need to for the study of native proteins in their native environment before initiating costly clinical trials.


Subject(s)
Calcium , Ganglia, Spinal , Animals , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Ganglia, Spinal/metabolism , Humans , Patch-Clamp Techniques , Rats , Sensory Receptor Cells/metabolism
3.
J Neurosci ; 41(37): 7712-7726, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34326146

ABSTRACT

Injury responses require communication between different cell types in the skin. Sensory neurons contribute to inflammation and can secrete signaling molecules that affect non-neuronal cells. Despite the pervasive role of translational regulation in nociception, the contribution of activity-dependent protein synthesis to inflammation is not well understood. To address this problem, we examined the landscape of nascent translation in murine dorsal root ganglion (DRG) neurons treated with inflammatory mediators using ribosome profiling. We identified the activity-dependent gene, Arc, as a target of translation in vitro and in vivo Inflammatory cues promote local translation of Arc in the skin. Arc-deficient male mice display exaggerated paw temperatures and vasodilation in response to an inflammatory challenge. Since Arc has recently been shown to be released from neurons in extracellular vesicles (EVs), we hypothesized that intercellular Arc signaling regulates the inflammatory response in skin. We found that the excessive thermal responses and vasodilation observed in Arc defective mice are rescued by injection of Arc-containing EVs into the skin. Our findings suggest that activity-dependent production of Arc in afferent fibers regulates neurogenic inflammation potentially through intercellular signaling.SIGNIFICANCE STATEMENT Nociceptors play prominent roles in pain and inflammation. We examined rapid changes in the landscape of nascent translation in cultured dorsal root ganglia (DRGs) treated with a combination of inflammatory mediators using ribosome profiling. We identified several hundred transcripts subject to rapid preferential translation. Among them is the immediate early gene (IEG) Arc. We provide evidence that Arc is translated in afferent fibers in the skin. Arc-deficient mice display several signs of exaggerated inflammation which is normalized on injection of Arc containing extracellular vesicles (EVs). Our work suggests that noxious cues can trigger Arc production by nociceptors which in turn constrains neurogenic inflammation in the skin.


Subject(s)
Cytoskeletal Proteins/metabolism , Ganglia, Spinal/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Signal Transduction/physiology , Vasodilation/physiology , Animals , Cytoskeletal Proteins/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/physiopathology , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nociception/physiology , Nociceptors/physiology , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/physiopathology
4.
Pain ; 161(7): 1636-1649, 2020 07.
Article in English | MEDLINE | ID: mdl-32102022

ABSTRACT

Preclinical evidence has highlighted the importance of the µ-opioid peptide (MOP) receptor on primary afferents for both the analgesic actions of MOP receptor agonists, as well as the development of tolerance, if not opioid-induced hyperalgesia. There is also growing interest in targeting other opioid peptide receptor subtypes (δ-opioid peptide [DOP], κ-opioid peptide [KOP], and nociceptin/orphanin-FQ opioid peptide [NOP]) on primary afferents, as alternatives to MOP receptors, which may not be associated with as many deleterious side effects. Nevertheless, results from several recent studies of human sensory neurons indicate that although there are many similarities between rodent and human sensory neurons, there may also be important differences. Thus, the purpose of this study was to assess the distribution of opioid receptor subtypes among human sensory neurons. A combination of pharmacology, patch-clamp electrophysiology, Ca imaging, and single-cell semiquantitative polymerase chain reaction was used. Our results suggest that functional MOP-like receptors are present in approximately 50% of human dorsal root ganglion neurons. δ-opioid peptide-like receptors were detected in a subpopulation largely overlapping that with MOP-like receptors. Furthermore, KOP-like and NOP-like receptors are detected in a large proportion (44% and 40%, respectively) of human dorsal root ganglion neurons with KOP receptors also overlapping with MOP receptors at a high rate (83%). Our data confirm that all 4 opioid receptor subtypes are present and functional in human sensory neurons, where the overlap of DOP, KOP, and NOP receptors with MOP receptors suggests that activation of these other opioid receptor subtypes may also have analgesic efficacy.


Subject(s)
Ganglia, Spinal , Receptors, Opioid , Analgesics, Opioid/pharmacology , Humans , Neurons , Opioid Peptides , Receptors, Opioid, kappa , Receptors, Opioid, mu
5.
Neuropsychopharmacology ; 45(3): 524-533, 2020 02.
Article in English | MEDLINE | ID: mdl-31590180

ABSTRACT

Neuropathic pain caused by nerve injury presents with severe spontaneous pain and a variety of comorbidities, including deficits in higher executive functions. None of these clinical problems are adequately treated with current analgesics. Targeting of the mitogen-activated protein kinase-interacting kinase (MNK1/2) and its phosphorylation target, the mRNA cap binding protein eIF4E, attenuates many types of nociceptive plasticity induced by inflammatory mediators and chemotherapeutic drugs but inhibiting this pathway does not alter nerve injury-induced mechanical allodynia. We used genetic manipulations and pharmacology to inhibit MNK-eIF4E activity in animals with spared nerve injury, a model of peripheral nerve injury (PNI)-induced neuropathic pain. We assessed the presence of spontaneous pain using conditioned place preference. We also tested performance in a medial prefrontal cortex (mPFC)-dependent rule-shifting task. WT neuropathic animals showed signs of spontaneous pain and were significantly impaired in the rule-shifting task while genetic and pharmacological inhibition of the MNK-eIF4E signaling axis protected against and reversed spontaneous pain and PNI-mediated cognitive impairment. Additionally, pharmacological and genetic inhibition of MNK-eIF4E signaling completely blocked and reversed maladaptive shortening in the length of axon initial segments (AIS) in the mPFC of PNI mice. Surprisingly, these striking positive outcomes on neuropathic pain occurred in the absence of any effect on mechanical allodynia, a standard test for neuropathic pain efficacy. Our results illustrate new testing paradigms for determining preclinical neuropathic pain efficacy and point to the MNK inhibitor tomivosertib (eFT508) as an important drug candidate for neuropathic pain treatment.


Subject(s)
Cognitive Dysfunction/therapy , Gene Targeting/methods , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Neuralgia/therapy , Peripheral Nerve Injuries/therapy , Pyridines/administration & dosage , Pyrimidines/administration & dosage , Animals , Cognitive Dysfunction/enzymology , Cognitive Dysfunction/genetics , Drug Delivery Systems/methods , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Neuralgia/enzymology , Neuralgia/genetics , Peripheral Nerve Injuries/enzymology , Peripheral Nerve Injuries/genetics , Prefrontal Cortex/drug effects , Prefrontal Cortex/enzymology
6.
Philos Trans R Soc Lond B Biol Sci ; 374(1785): 20190289, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31544610

ABSTRACT

Injury to sensory neurons causes an increase in the excitability of these cells leading to enhanced action potential generation and a lowering of spike threshold. This type of sensory neuron plasticity occurs across vertebrate and invertebrate species and has been linked to the development of both acute and persistent pain. Injury-induced plasticity in sensory neurons relies on localized changes in gene expression that occur at the level of mRNA translation. Many different translation regulation signalling events have been defined and these signalling events are thought to selectively target subsets of mRNAs. Recent evidence from mice suggests that the key signalling event for nociceptor plasticity is mitogen-activated protein kinase-interacting kinase (MNK) -mediated phosphorylation of eukaryotic translation initiation factor (eIF) 4E. To test the degree to which this is conserved in other species, we used a previously described sensory neuron plasticity model in Aplysia californica. We find, using a variety of pharmacological tools, that MNK signalling is crucial for axonal hyperexcitability in sensory neurons from Aplysia. We propose that MNK-eIF4E signalling is a core, evolutionarily conserved, signalling module that controls nociceptor plasticity. This finding has important implications for the therapeutic potential of this target, and it provides interesting clues about the evolutionary origins of mechanisms important for pain-related plasticity. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.


Subject(s)
Aplysia/physiology , Eukaryotic Initiation Factor-4E/genetics , Neuronal Plasticity/genetics , Protein Serine-Threonine Kinases/genetics , Sensory Receptor Cells/physiology , Signal Transduction , Animals , Aplysia/genetics , Axons/physiology , Eukaryotic Initiation Factor-4E/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
7.
Neurobiol Pain ; 5: 100024, 2019.
Article in English | MEDLINE | ID: mdl-31194015

ABSTRACT

Brain-derived neurotrophic factor (BDNF) signaling through its cognate receptor, TrkB, is a well-known promoter of synaptic plasticity at nociceptive synapses in the dorsal horn of the spinal cord. Existing evidence suggests that BDNF/TrkB signaling in neuropathic pain is sex dependent. We tested the hypothesis that the effects of BDNF/TrkB signaling in hyperalgesic priming might also be sexually dimorphic. Using the incision postsurgical pain model in male mice, we show that BDNF sequestration with TrkB-Fc administered at the time of surgery blocks the initiation and maintenance of hyperalgesic priming. However, when BDNF signaling was blocked prior to the precipitation of hyperalgesic priming with prostaglandin E2 (PGE2), priming was not reversed. This result is in contrast to our findings in male mice with interleukin-6 (IL6) as the priming stimulus where TrkB-Fc was effective in reversing the maintenance of hyperalgesic priming. Furthermore, in IL6-induced hyperalgesic priming, the BDNF sequestering agent, TrkB-fc, was effective in reversing the maintenance of hyperalgesic priming in male mice; however, when this experiment was conducted in female mice, we did not observe any effect of TrkB-fc. This markedly sexual dimorphic effect in mice is consistent with recent studies showing a similar effect in neuropathic pain models. We tested whether the sexual dimorphic role for BDNF was consistent across species. Importantly, we find that this sexual dimorphism does not occur in rats where TrkB-fc reverses hyperalgesic priming fully in both sexes. Finally, to determine the source of BDNF in hyperalgesic priming in mice, we used transgenic mice (Cx3cr1CreER  × Bdnfflx/flx mice) with BDNF eliminated from microglia. From these experiments we conclude that BDNF from microglia does not contribute to hyperalgesic priming and that the key source of BDNF for hyperalgesic priming is likely nociceptors in the dorsal root ganglion. These experiments demonstrate the importance of testing mechanistic hypotheses in both sexes in multiple species to gain insight into complex biology underlying chronic pain.

8.
J Neurosci ; 39(35): 6829-6847, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31253755

ABSTRACT

Nociceptors located in the trigeminal ganglion (TG) and DRG are the primary sensors of damaging or potentially damaging stimuli for the head and body, respectively, and are key drivers of chronic pain states. While nociceptors in these two tissues show a high degree of functional similarity, there are important differences in their development lineages, their functional connections to the CNS, and recent genome-wide analyses of gene expression suggest that they possess some unique genomic signatures. Here, we used translating ribosome affinity purification to comprehensively characterize and compare mRNA translation in Scn10a-positive nociceptors in the TG and DRG of male and female mice. This unbiased method independently confirms several findings of differences between TG and DRG nociceptors described in the literature but also suggests preferential utilization of key signaling pathways. Most prominently, we provide evidence that translational efficiency in mechanistic target of rapamycin (mTOR)-related genes is higher in the TG compared with DRG, whereas several genes associated with the negative regulator of mTOR, AMP-activated protein kinase, have higher translational efficiency in DRG nociceptors. Using capsaicin as a sensitizing stimulus, we show that behavioral responses are greater in the TG region and this effect is completely reversible with mTOR inhibition. These findings have implications for the relative capacity of these nociceptors to be sensitized upon injury. Together, our data provide a comprehensive, comparative view of transcriptome and translatome activity in TG and DRG nociceptors that enhances our understanding of nociceptor biology.SIGNIFICANCE STATEMENT The DRG and trigeminal ganglion (TG) provide sensory information from the body and head, respectively. Nociceptors in these tissues are critical first neurons in the pain pathway. Injury to peripheral neurons in these tissues can cause chronic pain. Interestingly, clinical and preclinical findings support the conclusion that injury to TG neurons is more likely to cause chronic pain and chronic pain in the TG area is more intense and more difficult to treat. We used translating ribosome affinity purification technology to gain new insight into potential differences in the translatomes of DRG and TG neurons. Our findings demonstrate previously unrecognized differences between TG and DRG nociceptors that provide new insight into how injury may differentially drive plasticity states in nociceptors in these two tissues.


Subject(s)
Ganglia, Spinal/metabolism , Nociceptors/metabolism , Transcriptome , Trigeminal Ganglion/metabolism , Animals , Female , Gene Expression Profiling , Male , Mice , Neurons/metabolism , Signal Transduction
9.
J Neurosci ; 39(3): 393-411, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30459229

ABSTRACT

Nociceptors, sensory neurons in the DRG that detect damaging or potentially damaging stimuli, are key drivers of neuropathic pain. Injury to these neurons causes activation of translation regulation signaling, including the mechanistic target of rapamycin complex 1 (mTORC1) and mitogen-activated protein kinase interacting kinase (MNK) eukaryotic initiation factor (eIF) 4E pathways. This is a mechanism driving changes in excitability of nociceptors that is critical for the generation of chronic pain states; however, the mRNAs that are translated to lead to this plasticity have not been elucidated. To address this gap in knowledge, we used translating ribosome affinity purification in male and female mice to comprehensively characterize mRNA translation in Scn10a-positive nociceptors in chemotherapy-induced neuropathic pain (CIPN) caused by paclitaxel treatment. This unbiased method creates a new resource for the field, confirms many findings in the CIPN literature and also find extensive evidence for new target mechanisms that may cause CIPN. We provide evidence that an underlying mechanism of CIPN is sustained mTORC1 activation driven by MNK1-eIF4E signaling. RagA, a GTPase controlling mTORC1 activity, is identified as a novel target of MNK1-eIF4E signaling. This demonstrates a novel translation regulation signaling circuit wherein MNK1-eIF4E activity drives mTORC1 via control of RagA translation. CIPN and RagA translation are strongly attenuated by genetic ablation of eIF4E phosphorylation, MNK1 elimination or treatment with the MNK inhibitor eFT508. We identify a novel translational circuit for the genesis of neuropathic pain caused by chemotherapy with important implications for therapeutics.SIGNIFICANCE STATEMENT Neuropathic pain affects up to 10% of the population, but its underlying mechanisms are incompletely understood, leading to poor treatment outcomes. We used translating ribosome affinity purification technology to create a comprehensive translational profile of DRG nociceptors in naive mice and at the peak of neuropathic pain induced by paclitaxel treatment. We reveal new insight into how mechanistic target of rapamycin complex 1 is activated in neuropathic pain pointing to a key role of MNK1-eIF4E-mediated translation of a complex of mRNAs that control mechanistic target of rapamycin complex 1 signaling at the surface of the lysosome. We validate this finding using genetic and pharmacological techniques. Our work strongly suggests that MNK1-eIF4E signaling drives CIPN and that a drug in human clinical trials, eFT508, may be a new therapeutic for neuropathic pain.


Subject(s)
Gene Expression Profiling , Mice, Knockout/genetics , Monomeric GTP-Binding Proteins/genetics , Neuralgia/genetics , Nociceptors , Animals , Antineoplastic Agents, Phytogenic , Eukaryotic Initiation Factor-4E/genetics , Female , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Mice, Transgenic , NAV1.8 Voltage-Gated Sodium Channel/genetics , Neuralgia/chemically induced , Neuralgia/psychology , Paclitaxel , Pain Measurement , Protein Serine-Threonine Kinases/genetics , Ribosomes/chemistry , Signal Transduction/genetics
10.
Neurobiol Pain ; 4: 45-50, 2018.
Article in English | MEDLINE | ID: mdl-30211343

ABSTRACT

Mitogen activated protein kinase-interacting kinase (MNK)-mediated phosphorylation of the mRNA cap binding protein eIF4E controls the translation of a subset of mRNAs that are involved in neuronal and immune plasticity. MNK-eIF4E signaling plays a crucial role in the response of nociceptors to injury and/or inflammatory mediators. This signaling pathway controls changes in excitability that drive acute pain sensitization as well as the translation of mRNAs, such as brain-derived neurotrophic factor (BDNF), that enhance plasticity between dorsal root ganglion (DRG) nociceptors and second order neurons in the spinal dorsal horn. However, since MNK-eIF4E signaling also regulates immune responses, we sought to assess whether decreased pain responses are coupled to decreased inflammatory responses in mice lacking MNK-eIF4E signaling. Our results show that while inflammation resolves more quickly in mice lacking MNK-eIF4E signaling, peak inflammatory responses measured with infrared imaging are not altered in the absence of this signaling pathway even though pain responses are significantly decreased. We also find that inflammation fails to produce hyperalgesic priming, a model for the transition to a chronic pain state, in mice lacking MNK-eIF4E signaling. We conclude that MNK-eIF4E signaling is a critical signaling pathway for the generation of nociceptive plasticity leading to acute pain responses to inflammation and the development of hyperalgesic priming.

11.
Front Cell Neurosci ; 12: 29, 2018.
Article in English | MEDLINE | ID: mdl-29467623

ABSTRACT

Plasticity in dorsal root ganglion (DRG) neurons that promotes pain requires activity-dependent mRNA translation. Protein synthesis inhibitors block the ability of many pain-promoting molecules to enhance excitability in DRG neurons and attenuate behavioral signs of pain plasticity. In line with this, we have recently shown that phosphorylation of the 5' cap-binding protein, eIF4E, plays a pivotal role in plasticity of DRG nociceptors in models of hyperalgesic priming. However, mRNA targets of eIF4E phosphorylation have not been elucidated in the DRG. Brain-derived neurotrophic factor (BDNF) signaling from nociceptors in the DRG to spinal dorsal horn neurons is an important mediator of hyperalgesic priming. Regulatory mechanisms that promote pain plasticity via controlling BDNF expression that is involved in promoting pain plasticity have not been identified. We show that phosphorylation of eIF4E is paramount for Bdnf mRNA translation in the DRG. Bdnf mRNA translation is reduced in mice lacking eIF4E phosphorylation (eIF4ES209A ) and pro-nociceptive factors fail to increase BDNF protein levels in the DRGs of these mice despite robust upregulation of Bdnf-201 mRNA levels. Importantly, bypassing the DRG by giving intrathecal injection of BDNF in eIF4ES209A mice creates a strong hyperalgesic priming response that is normally absent or reduced in these mice. We conclude that eIF4E phosphorylation-mediated translational control of BDNF expression is a key mechanism for nociceptor plasticity leading to hyperalgesic priming.

12.
J Neurosci ; 38(2): 379-397, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29167404

ABSTRACT

Dopaminergic modulation of spinal cord plasticity has long been recognized, but circuits affected by this system and the precise receptor subtypes involved in this modulation have not been defined. Dopaminergic modulation from the A11 nucleus of the hypothalamus contributes to plasticity in a model of chronic pain called hyperalgesic priming. Here we tested the hypothesis that the key receptor subtype mediating this effect is the D5 receptor (D5R). We find that a spinally directed lesion of dopaminergic neurons reverses hyperalgesic priming in both sexes and that a D1/D5 antagonist transiently inhibits neuropathic pain. We used mice lacking D5Rs (DRD5KO mice) to show that carrageenan, interleukin 6, as well as BDNF-induced hyperalgesia and priming are reduced specifically in male mice. These male DRD5KO mice also show reduced formalin pain responses and decreased heat pain. To characterize the subtypes of dorsal horn neurons engaged by dopamine signaling in the hyperalgesic priming model, we used c-fos labeling. We find that a mixed D1/D5 agonist given spinally to primed mice activates a subset of neurons in lamina III and IV of the dorsal horn that coexpress PAX2, a transcription factor for GABAergic interneurons. In line with this, we show that gabazine, a GABA-A receptor antagonist, is antihyperalgesic in primed mice exposed to spinal administration of a D1/D5 agonist. Therefore, the D5R, in males, and the D1R, in females, exert a powerful influence over spinal cord circuitry in pathological pain likely via modulation of deep dorsal horn GABAergic neurons.SIGNIFICANCE STATEMENT Pain is the most prominent reason why people seek medical attention, and chronic pain incidence worldwide has been estimated to be as high as 33%. This study provides new insight into how descending dopamine controls pathological pain states. Our work demonstrates that dopaminergic spinal projections are necessary for the maintenance of a chronic pain state in both sexes; however, D5 receptors seem to play a critical role in males whereas females rely more heavily on D1 receptors, an effect that could be explained by sexual dimorphisms in receptor expression levels. Collectively, our work provides new insights into how the dopaminergic system interacts with spinal circuits to promote pain plasticity.


Subject(s)
Chronic Pain/metabolism , Neuralgia/metabolism , Posterior Horn Cells/metabolism , Receptors, Dopamine D5/metabolism , Animals , Female , Hyperalgesia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Dopamine D1/metabolism , Sex Characteristics
13.
J Neurosci ; 37(31): 7481-7499, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28674170

ABSTRACT

Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4ES209A ). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF- and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2-/- mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2-/- mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.SIGNIFICANCE STATEMENT Chronic pain is a debilitating disease affecting approximately one in three Americans. Chronic pain is thought to be driven by changes in the excitability of peripheral nociceptive neurons, but the precise mechanisms controlling these changes are not elucidated. Emerging evidence demonstrates that mRNA translation regulation pathways are key factors in changes in nociceptor excitability. Our work demonstrates that a single phosphorylation site on the 5' cap-binding protein eIF4E is a critical mechanism for changes in nociceptor excitability that drive the development of chronic pain. We reveal a new mechanistic target for the development of a chronic pain state and propose that targeting the upstream kinase, MAPK interacting kinase 1/2, could be used as a therapeutic approach for chronic pain.


Subject(s)
Adenosine Triphosphatases/metabolism , Cation Transport Proteins/metabolism , Chronic Pain/physiopathology , Eukaryotic Initiation Factor-4E/metabolism , Ganglia, Spinal/physiopathology , Hyperalgesia/physiopathology , Neuronal Plasticity , Nociception , Animals , Chronic Pain/etiology , Copper-Transporting ATPases , Disease Progression , Female , Male , Mice , Mice, Inbred C57BL , Nociceptive Pain/etiology , Nociceptive Pain/physiopathology , Sensory Receptor Cells/metabolism , Signal Transduction
14.
Article in English | MEDLINE | ID: mdl-27186076

ABSTRACT

INTRODUCTION: Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems. The mechanism of this modulation remains only partially delineated, and activity induced via the CB1 and CB2 receptors may be distinct despite significant sequence homology and structural similarity of ligands. METHODS: The CB2-selective agonist JWH-015 was used to investigate mechanisms downstream of CB2 activation in mouse and human breast cancer cell lines in vitro and in a murine mammary tumor model. RESULTS: JWH-015 treatment significantly reduced primary tumor burden and metastasis of luciferase-tagged murine mammary carcinoma 4T1 cells in immunocompetent mice in vivo. Furthermore, JWH-015 reduced the viability of murine 4T1 and human MCF7 mammary carcinoma cells in vitro by inducing apoptosis. JWH-015-mediated reduction of breast cancer cell viability was not dependent on Gαi signaling in vitro or modified by classical pharmacological blockade of CB1, GPR55, TRPV1, or TRPA1 receptors. JWH-015 effects were calcium dependent and induced changes in MAPK/ERK signaling. CONCLUSION: The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor.

15.
Pain ; 157(6): 1314-1324, 2016 06.
Article in English | MEDLINE | ID: mdl-26859820

ABSTRACT

Plasticity in inhibitory receptors, neurotransmission, and networks is an important mechanism for nociceptive signal amplification in the spinal dorsal horn. We studied potential changes in GABAergic pharmacology and its underlying mechanisms in hyperalgesic priming, a model of the transition from acute to chronic pain. We find that while GABAA agonists and positive allosteric modulators reduce mechanical hypersensitivity to an acute insult, they fail to do so during the maintenance phase of hyperalgesic priming. In contrast, GABAA antagonism promotes antinociception and a reduction in facial grimacing after the transition to a chronic pain state. During the maintenance phase of hyperalgesic priming, we observed increased neuroligin (nlgn) 2 expression in the spinal dorsal horn. This protein increase was associated with an increase in nlgn2A splice variant mRNA, which promotes inhibitory synaptogenesis. Disruption of nlgn2 function with the peptide inhibitor, neurolide 2, produced mechanical hypersensitivity in naive mice but reversed hyperalgesic priming in mice previously exposed to brain-derived neurotrophic factor. Neurolide 2 treatment also reverses the change in polarity in GABAergic pharmacology observed in the maintenance of hyperalgesic priming. We propose that increased nlgn2 expression is associated with hyperalgesic priming where it promotes dysregulation of inhibitory networks. Our observations reveal new mechanisms involved in the spinal maintenance of a pain plasticity and further suggest that disinhibitory mechanisms are central features of neuroplasticity in the spinal dorsal horn.


Subject(s)
Acute Pain/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Chronic Pain/metabolism , GABAergic Neurons/metabolism , Hyperalgesia/metabolism , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Spinal Cord/metabolism , Acute Pain/physiopathology , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Chronic Pain/physiopathology , Disease Models, Animal , GABAergic Neurons/drug effects , Hyperalgesia/physiopathology , Mice , Mice, Inbred ICR , Neuronal Plasticity/drug effects , Pain Threshold/physiology , Spinal Cord/drug effects
16.
Mol Pain ; 10: 45, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24993495

ABSTRACT

Transcriptional regulation of genes by cyclic AMP response element binding protein (CREB) is essential for the maintenance of long-term memory. Moreover, retrograde axonal trafficking of CREB in response to nerve growth factor (NGF) is critical for the survival of developing primary sensory neurons. We have previously demonstrated that hindpaw injection of interleukin-6 (IL-6) induces mechanical hypersensitivity and hyperalgesic priming that is prevented by the local injection of protein synthesis inhibitors. However, proteins that are locally synthesized that might lead to this effect have not been identified. We hypothesized that retrograde axonal trafficking of nascently synthesized CREB might link local, activity-dependent translation to nociceptive plasticity. To test this hypothesis, we determined if IL-6 enhances the expression of CREB and if it subsequently undergoes retrograde axonal transport. IL-6 treatment of sensory neurons in vitro caused an increase in CREB protein and in vivo treatment evoked an increase in CREB in the sciatic nerve consistent with retrograde transport. Importantly, co-injection of IL-6 with the methionine analogue azido-homoalanine (AHA), to assess nascently synthesized proteins, revealed an increase in CREB containing AHA in the sciatic nerve 2 hrs post injection, indicating retrograde transport of nascently synthesized CREB. Behaviorally, blockade of retrograde transport by disruption of microtubules or inhibition of dynein or intrathecal injection of cAMP response element (CRE) consensus sequence DNA oligonucleotides, which act as decoys for CREB DNA binding, prevented the development of IL-6-induced mechanical hypersensitivity and hyperalgesic priming. Consistent with previous studies in inflammatory models, intraplantar IL-6 enhanced the expression of BDNF in dorsal root ganglion (DRG). This effect was blocked by inhibition of retrograde axonal transport and by intrathecal CRE oligonucleotides. Collectively, these findings point to a novel mechanism of axonal translation and retrograde trafficking linking locally-generated signals to long-term nociceptive sensitization.


Subject(s)
Axonal Transport/drug effects , CREB-Binding Protein/metabolism , Gene Expression Regulation/drug effects , Interleukin-6/pharmacology , Nociceptive Pain/chemically induced , Sensory Receptor Cells/drug effects , Animals , Axonal Transport/physiology , Brain-Derived Neurotrophic Factor/pharmacology , Cells, Cultured , Colchicine/pharmacology , Disease Models, Animal , Ganglia, Spinal/pathology , Interleukin-6/toxicity , Male , Mice , Mice, Inbred ICR , Nociceptive Pain/pathology , Nocodazole/pharmacology , Protein Transport/drug effects , Quinazolinones/pharmacology , Sciatic Nerve/drug effects , Sciatic Nerve/metabolism , Sensory Receptor Cells/metabolism , Tubulin Modulators/pharmacology
17.
Proc Natl Acad Sci U S A ; 110(35): 14450-5, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23940317

ABSTRACT

Atypical protein kinase C (aPKC) isoforms ζ and λ interact with polarity complex protein Par3 and are evolutionarily conserved regulators of cell polarity. Prkcz encodes aPKC-ζ and PKM-ζ, a truncated, neuron-specific alternative transcript, and Prkcl encodes aPKC-λ. Here we show that, in embryonic hippocampal neurons, two aPKC isoforms, aPKC-λ and PKM-ζ, are expressed. The localization of these isoforms is spatially distinct in a polarized neuron. aPKC-λ, as well as Par3, localizes at the presumptive axon, whereas PKM-ζ and Par3 are distributed at non-axon-forming neurites. PKM-ζ competes with aPKC-λ for binding to Par3 and disrupts the aPKC-λ-Par3 complex. Silencing of PKM-ζ or overexpression of aPKC-λ in hippocampal neurons alters neuronal polarity, resulting in neurons with supernumerary axons. In contrast, the overexpression of PKM-ζ prevents axon specification. Our studies suggest a molecular model wherein mutually antagonistic intermolecular competition between aPKC isoforms directs the establishment of neuronal polarity.


Subject(s)
Cell Polarity/physiology , Hippocampus/cytology , Isoenzymes/metabolism , Neurons/cytology , Protein Kinase C/metabolism , Animals , Cells, Cultured , Female , Isoenzymes/physiology , Pregnancy , Protein Kinase C/physiology , Rats , Rats, Sprague-Dawley
18.
Mol Pain ; 9: 12, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23510079

ABSTRACT

BACKGROUND: Chronic pain is an important medical problem affecting hundreds of millions of people worldwide. Mechanisms underlying the maintenance of chronic pain states are poorly understood but the elucidation of such mechanisms have the potential to reveal novel therapeutics capable of reversing a chronic pain state. We have recently shown that the maintenance of a chronic pain state is dependent on an atypical PKC, PKMζ, but the mechanisms involved in controlling PKMζ in chronic pain are completely unknown. Here we have tested the hypothesis that brain derived neurotrophic factor (BDNF) regulates PKMζ, and possibly other aPKCs, to maintain a centralized chronic pain state. RESULTS: We first demonstrate that although other kinases play a role in the initiation of persistent nociceptive sensitization, they are not involved in the maintenance of this chronic pain state indicating that a ZIP-reversible process is responsible for the maintenance of persistent sensitization. We further show that BDNF plays a critical role in initiating and maintaining persistent nociceptive sensitization and that this occurs via a ZIP-reversible process. Moreover, at spinal synapses, BDNF controls PKMζ and PKCλ nascent synthesis via mTORC1 and BDNF enhances PKMζ phosphorylaton. Finally, we show that BDNF signaling to PKMζ and PKCλ is conserved across CNS synapses demonstrating molecular links between pain and memory mechanisms. CONCLUSIONS: Hence, BDNF is a key regulator of aPKC synthesis and phosphorylation and an essential mediator of the maintenance of a centralized chronic pain state. These findings point to BDNF regulation of aPKC as a potential therapeutic target for the permanent reversal of a chronic pain state.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Chronic Pain/enzymology , Protein Kinase C/metabolism , Synapses/enzymology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cerebral Cortex/pathology , Chronic Pain/pathology , Eukaryotic Initiation Factor-4F/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Phosphorylation/drug effects , Posterior Horn Cells/drug effects , Posterior Horn Cells/enzymology , Protein Biosynthesis/drug effects , Protein Kinase C/antagonists & inhibitors , Protein Transport/drug effects , Synapses/drug effects , TOR Serine-Threonine Kinases/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...