Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 6: 122, 2019.
Article in English | MEDLINE | ID: mdl-31728197

ABSTRACT

The cwp (cuticular water permeability) gene controls the development of cuticular microfissuring and subsequent fruit dehydration in tomato. The gene underwent silencing in the evolution of the fleshy cultivated tomato but is expressed in the primitive wild tomato relatives. The introgression of the expressed allele from the wild S. habrochaites (cwp h ) into the cultivated tomato (Solanum lycopersicum) leads to the phenotype of fruit water loss during and following ripening. In this report, we show that low temperature impacts on the severity of the cuticular microfissure phenotype via a combination of effects on both expression and alternative splicing of cwp h . The cwp gene, comprising four exons and three introns, undergoes post-transcriptional alternative splicing processes, leading to seven alternative transcripts that differ in reading-frame lengths. Transgenic plants expressing each of the alternative transcripts identified the longest reading frame (VAR1) as the functional splice variant. Low temperature led to a strong upregulation of cwp h expression, compounded by an increase in the relative proportion of the functional VAR1 transcript, leading to increased severity of microfissuring of the cuticle. In summary, we demonstrate the molecular mechanism behind the horticultural phenomenon of the low-temperature effect on cuticular microfissures in the dehydrating tomato.

2.
Plant J ; 52(4): 627-39, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17877702

ABSTRACT

One of the most intriguing phenomena of fleshy fruit is the ability to maintain high water content at maturity, even following harvest. This is accomplished by a fruit cuticle that is highly impermeable to water diffusion. In this paper, we report on a novel genotype of tomato, developed via introgression from the wild species Solanum habrochaites, which is characterized by microfissuring of the fruit cuticle and dehydration of the mature fruit. The microfissure/dehydration phenotype is inherited as a single gene, termed Cwp1 (cuticular water permeability). The gene was fine mapped, and its identity was determined by map-based cloning and differential expression analysis in near-isogenic lines. Causality of the Cwp1 gene was shown by the heterologous transgenic expression of the gene in the cultivated tomato, which caused a microfissured fruit cuticle leading to dehydrated fruit. Cwp1 encodes for a protein of unidentified function in the DUF833 domain family. The gene is expressed in the fruit epidermis of the dehydrating genotype harbouring the wild-species introgression, but not in the cultivated tomato. It is expressed only in the primitive green-fruited wild tomato species, but is not expressed in the cultivated Solanum lycopersicum and the closely related Solanum cheesmaniae and Solanum pimpinellifolium, indicating a pre-adaptive role for Cwp1 silencing in the evolution and domestication of the cultivated tomato.


Subject(s)
Fruit/genetics , Genes, Plant , Solanum lycopersicum/genetics , Solanum/genetics , Amino Acid Sequence , Chromosomes, Plant/genetics , Evolution, Molecular , Fruit/growth & development , Fruit/ultrastructure , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genome, Plant , Genotype , Solanum lycopersicum/growth & development , Solanum lycopersicum/ultrastructure , Microscopy, Electron, Scanning , Molecular Sequence Data , Phylogeny , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Solanum/classification , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...