Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sports Med Open ; 10(1): 69, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853205

ABSTRACT

BACKGROUND: Sedentary behavior has been shown to negatively affect parameters of endothelial function and central hemodynamics, both of which are closely associated with vascular health. Exercise prior to sedentary behavior has demonstrated potential as a preventive strategy to mitigate these detrimental effects. To evaluate the impact of exercise prior to sedentary behavior on vascular health parameters in the adult population, a systematic review and meta-analysis were conducted, synthesizing the available body of knowledge. METHODS: A literature search was carried out in 6 databases. For each outcome, standard error and mean difference or standardized mean difference were calculated, as appropriate. An analysis was performed using a random effects model with a 95% confidence interval, using the inverse variance statistical method. Risk of bias assessment was performed using ROB2 and considerations for crossover trials. The quality of evidence was assessed using the GRADE system. RESULTS: Exercise performed prior to prolonged sedentary behavior resulted in increased flow-mediated vasodilation at the first and third hours of sedentary time, compared with the control condition of sedentary behavior without prior exercise [MD: 1.51% (95% CI: 0.57 to 2.45) and MD: 1.36% (95% CI: 0.56 to 2.16), respectively]. Moreover, prior exercise led to increased shear rate at the first and third hours of sedentary time [MD: 7.70 s^-1 (95% CI: 0.79 to 14.61) and MD: 5.21 s^-1 (95% CI: 1.77 to 8.43), respectively]. Furthermore, it increased blood flow at the third hour [SMD: 0.40 (95%CI: 0.07 to 0.72)], compared with the control condition of prolonged sedentary behavior without prior exercise. Regarding hemodynamic parameters, exercise prior to prolonged sedentary behavior decreased mean arterial pressure during the first and third hours of sedentary behavior [MD: -1.94 mmHg (95% CI: -2.77 to -1.11) and MD: -1.90 mmHg (95% CI: -3.27 to -0.53), respectively], and an increase in heart rate during the first hour [MD: 4.38 beats per minute (95%CI: 2.78 to 5.98)] compared with the control condition of prolonged sedentary behavior without prior exercise. CONCLUSIONS: The findings of this research suggest that prior exercise may prevent the impairment of vascular health parameters caused by sedentary behavior. However, the quality of the evidence was estimated as moderate. Therefore, further experimental studies and high-quality clinical trials are needed in this field to strengthen the results and conclusions drawn. PROSPERO REGISTRATION NUMBER: CRD42023393686.

2.
Chem Sci ; 14(42): 11737-11748, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920351

ABSTRACT

Recently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30Na2O-70P2O5, to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass. We investigate the interfacial interactions between the two components using pair distribution function analysis and solid state NMR spectroscopy, and suggest potential interactions between the two phases. Thermal analysis of the blend samples indicated that they were less thermally stable than the starting materials and had a Tg shifted relative to the pristine materials. Annular dark field scanning transmission electron microscopy tomography, X-ray energy dispersive spectroscopy (EDS), nanoindentation and 31P NMR all indicated close mixing of the two phases, suggesting the formation of immiscible blends.

3.
ACS Appl Mater Interfaces ; 15(25): 30212-30219, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37307137

ABSTRACT

Condensation of BINAPO-(PhCHO)2 and 1,3,5-tris(4-aminophenyl)benzene (TAPB) results in a new imine-based chiral organic material (COM) that can be further post-functionalized through reductive transformation of imine linkers to amines. While the imine-based material does not show the necessary stability to be used as a heterogeneous catalyst, the reduced amine-linked framework can be efficiently employed in asymmetric allylation of different aromatic aldehydes. Yields and enantiomeric excesses found are comparable to those observed for the molecular BINAP oxide catalyst, but importantly, the amine-based material also permits its recyclability.

4.
J Colloid Interface Sci ; 642: 747-756, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37037080

ABSTRACT

HYPOTHESIS: The wettability of carbonate rocks is expected to be affected by the organic components of biominerals which are complex, nanostructured organo-mineral assemblages. Elucidating the nanoscale mechanisms driving the wettability of solid surfaces will enable a better understanding of the role of biominerals in the wetting properties of carbonate rocks to control various geological, environmental and industrial processes. EXPERIMENTS: Using Atomic Force Microscopy and Spectroscopy (AFM/AFS) we probed the wettability properties of carbonate rocks with different amounts of organic material. The adhesion properties of two types of limestones were determined in liquid environments at different length scales (nm to mm) using functionalized tips with different chemical groups to determine the extent of surface hydrophobic and hydrophilic organo-mineral interactions. FINDINGS: We observed homogeneous hydrophobic areas at length scales below < 5 µm. The origin of this hydrophobicity is linked to the presence of organics, whose amount and spatial distribution depend on the rock composition. Specifically, our results reveal that the biogenic vs non-biogenic origin of the mineral grains is the main rock property controlling the wettability of the solid surface. Overall, our methodology offers a multi-scale approach to unravel the role that organic moieties and biominerals play in controlling the wettability of rock-water interfaces.

5.
Proc Natl Acad Sci U S A ; 120(7): e2208836120, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36763534

ABSTRACT

We show how historical gypsum plaster preparation methods affect the microstructure and the wettability properties of the final stucco materials. We reproduced a traditional Persian recipe (Gach-e Koshteh, ~14th century AD), which involves a continuous mechanical treatment during plaster hydration. These samples were compared with a laboratory-replicated historical recipe from Renaissance Italy (Gesso Sottile, ~15th century AD) and contemporary low-strength plaster. The Koshteh recipe induces the formation of gypsum platelets, which exhibit preferential orientation in the plaster bulk. In contrast, the Italian and low-strength plasters comprise a typical needle-like morphology of gypsum crystals. The platelets in Koshteh expose the more hydrophilic {010} face of gypsum in a much more pronounced manner than needles. Consequently, the Iranian plaster displays enhanced wettability, enabling its direct use for water-based decoration purposes, or as a fine finishing thin layer, without the need of mixing it with a binder material. Contrary, in Sottile, gypsum crystals are left to equilibrate in large excess of water, which promotes the growth of long needles at the expense of smaller crystals. Typically, such needles are several times longer than those found in a control regular plaster. For this crystal habit, the total surface of hydrophilic faces is minimized. Consequently, such plaster layers tend to repel water, which can then be used, e.g., as a substrate for oil-based panel paintings. These findings highlight the development of advanced functional materials, by tuning their microtexture, already during the premodern era.

6.
Eur J Phys Rehabil Med ; 58(2): 206-217, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34918889

ABSTRACT

INTRODUCTION: Is the application of ultrasound effective on pain, the severity of the symptoms, physical function, strength, and neurophysiological parameters of the median nerve conduction in patients with carpal tunnel syndrome? EVIDENCE ACQUISITION: A systematic review and meta-analysis of randomized controlled trials was performed by using a structured search strategy in Scopus, CINAHL, Web of Science and PEDro databases. All the primary studies included samples with carpal tunnel syndrome treated by: ultrasound versus no treatment, therapeutic ultrasound versus sham ultrasound, ultrasound and usual care versus usual care, or ultrasound and other intervention versus the same intervention. The outcomes measures registered were pain, severity of symptoms, function, strength, and neurophysiological parameters (motor distal latency and sensory distal latency) of the median nerve. Methodological quality was evaluated by PEdro Scale. EVIDENCE SYNTHESIS: Ten clinical trials met the inclusion criteria for the systematic review. Eight trials were meta-analyzed, which included a total of 2069 patients with carpal tunnel syndrome. The methodological quality of the included studies ranged among limited (5 trials), moderate (3 trials), and high (2 trials). In one of the electrophysiological parameters (motor distal latency), a significant difference between groups after the use of ultrasound was observed (MD=-0.10; fixed 95% CI=-0.20, -0.01; P=0.04). No significant differences between groups were observed at post-treatment for pain (P=0.29), severity of symptoms (P=0.99), function (P=0.54), strength (P=0.27) and for the rest of the electrophysiological parameters evaluated (P>0.05). CONCLUSIONS: The use of ultrasound on patients with carpal tunnel syndrome seems to improve motor distal latency. This finding implies a partial improvement at the neurophysiological level, representing a reduction in the grade of clinical severity. Additional clinical trials with a high methodological quality are needed to investigate the doses at which ultrasound are most effective.


Subject(s)
Carpal Tunnel Syndrome , Carpal Tunnel Syndrome/diagnosis , Humans , Neural Conduction/physiology , Pain , Treatment Outcome , Ultrasonography
7.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34815342

ABSTRACT

In recent years, we have come to appreciate the astounding intricacies associated with the formation of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that the nucleation of calcium sulfate systems occurs nonclassically, involving the aggregation and reorganization of nanosized prenucleation species. In recent work, we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant micrometer-sized CaSO4 crystals. This property of CaSO4 minerals provides us with the unique opportunity to search for evidence of nonclassical nucleation pathways in geological environments. In particular, we focused on large anhydrite crystals extracted from the Naica Mine in Mexico. We were able to shed light on this mineral's growth history by mapping defects at different length scales. Based on this, we argue that the nanoscale misalignment of the structural subunits, observed in the initial calcium sulfate crystal seeds, propagates through different length scales both in morphological, as well as in strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nonclassical nucleation mechanism introduces a "seed of imperfection," which leads to a macroscopic "single" crystal whose fragments do not fit together at different length scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. However, at the same time, the material retains in part its single crystal nature.

8.
Dalton Trans ; 49(19): 6446-6456, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32355938

ABSTRACT

The electrochemical reduction of organic contaminants allows their removal from water. In this contribution, the electrocatalytic hydrogenation of nitrobenzene is studied using both oxidized carbon fibres and ruthenium nanoparticles supported on unmodified carbon fibres as catalysts. The two systems produce azoxynitrobenzene as the main product, while aniline is only observed in minor quantities. Although PhNO2 hydrogenation is the favoured reaction, the hydrogen evolution reaction (HER) competes in both systems under catalytic conditions. H2 formation occurs in larger amounts when using the Ru nanoparticle based catalyst. While similar reaction outputs were observed for both catalytic systems, DFT calculations revealed some significant differences related to distinct interactions between the catalytic material and the organic substrates or products, which could pave the way for the design of new catalytic materials.

9.
Nanoscale ; 12(2): 1128-1137, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31850432

ABSTRACT

The assembly of 3-dimensional covalent organic frameworks on the surface of carbon nanotubes is designed and successfully developed for the first time via the hybridization of imine-based covalent organic frameworks (COF-300) and oxidized MWCNTs by one-pot chemical synthesis. The resulting hybrid material ox-MWCNTs@COF exhibits a conformal structure that consists of a uniform amorphous COF layer covering the ox-MWCNT surface. The measurements of individual hybrid nanotube mechanical strength performed with atomic force microscopy provide insights into their stability and resistance. The results evidence a very robust hybrid tubular nanostructure that preserves the benefits obtained from COF, such as CO2 adsorption. Further digestion of the organic structure with aniline enables the study of the interplay between the hybrid interface and its nanomechanics. This new hybrid nanomaterial presents exceptional mechanical and electrical properties, merging the properties of the CNT template and COF-300.

10.
Chemistry ; 24(13): 3305-3313, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29314370

ABSTRACT

Commercial carbon fibers can be used as electrodes with high conductive surfaces in reduced devices. Oxidative treatment of such electrodes results in a chemically robust material with high catalytic activity for electrochemical proton reduction, enabling the measurement of quantitative faradaic yields (>95 %) and high current densities. Combination of experiments and DFT calculations reveals that the presence of carboxylic groups triggers such electrocatalytic activity in a bioinspired manner. Analogously to the known Hantzsch esters, the oxidized carbon fiber material is able to transfer hydrides, which can react with protons, generating H2 , or with organic substrates resulting in their hydrogenation. A plausible mechanism is proposed based on DFT calculations on model systems.

11.
Nanoscale ; 9(23): 7911-7921, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28569304

ABSTRACT

A new insight into photoinduced charge transfer processes across carbon nanotube@TiO2 interfaces has been gained based on experimental details from transient absorption spectroscopy. We show that photoinduced, interfacial hole transfer to carboxylic acid-functionalized multiwalled carbon nanotubes (oxMWCNTs) from TiO2 results in hole-doped oxMWCNTs and reduced TiO2. The latter is inferred from femto- and nanosecond transient absorption spectroscopy performed with oxMWCNT@TiO2 dispersions and complemented with investigations using methyl viologen and N,N,N',N'-tetramethyl-p-phenylenediamine as an electron scavenger and a hole scavenger, respectively. The results of ultraviolet photoemission spectroscopy (UPS) of the compounds corroborate the findings, highlighting the strong coupling between oxMWCNTs and TiO2 in these hybrids.

12.
FASEB J ; 22(5): 1581-96, 2008 May.
Article in English | MEDLINE | ID: mdl-18184720

ABSTRACT

Profilin has been implicated in cell motility and in a variety of cellular processes, such as membrane extension, endocytosis, and formation of focal complexes. In vivo, profilin replenish the pool of ATP-actin monomers by increasing the rate of nucleotide exchange of ADP-actin for ATP-actin, promoting the incorporation of new actin monomers at the barbed end of actin filaments. For this report, we generated a membrane-permeable version of profilin I (PTD4-PfnI) for the alteration of intracellular profilin levels taking advantage of the protein transduction technique. We show that profilin I induces lamellipodia formation independently of growth factor presence in primary bovine trabecular meshwork (BTM) cells. The effects are time- and concentration-dependent and specific to the profilin I isoform. Profilin II, the neuronal isoform, failed to extend lamellipodia in the same degree as profilin I. H133S, a mutation in the polyproline binding domain, showed a reduced ability to induce lamellipodia. H199E, mutation in the actin binding domain failed to induce membrane spreading and inhibit fetal bovine serum (FBS) -induced lamellipodia extension. Incubation with a synthetic polyproline domain peptide (GP5)3, fused to a transduction domain, abolished lamellipodia induction by profilin or FBS. Time-lapse microscopy confirmed the effects of profilin on lamellipodia extension with a higher spreading velocity than FBS. PTD4-Pfn I was found in the inner lamellipodia domain, at the membrane leading edge where it colocalizes with endogenous profilin. While FBS-induced lamellipodia formation activates Rac1, PTD4-Pfn I stimulation did not induce Rac1 activation. We propose a role of profilin I favoring lamellipodia formation by a mechanism downstream of growth factor.


Subject(s)
Profilins/pharmacology , Pseudopodia/metabolism , Recombinant Fusion Proteins/pharmacology , Actins/metabolism , Animals , Azepines/pharmacology , Cattle , Cells, Cultured , Depsipeptides/pharmacology , Humans , Intercellular Signaling Peptides and Proteins/physiology , Naphthalenes/pharmacology , Peptides/metabolism , Phalloidine/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Profilins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pseudopodia/drug effects , Rats , Trabecular Meshwork/metabolism , rac1 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...