Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 16262, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34376769

ABSTRACT

We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of Airy beams, both over the square root of the radial coordinate, and show how to construct a field that reproduces itself periodically in propagation, i.e., a field that renders the Talbot effect. Additionally, it is shown that the superposition of Airy beams produces self-focusing.

2.
J Opt Soc Am A Opt Image Sci Vis ; 38(5): 711-718, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983276

ABSTRACT

We study the propagation of superpositions of Airy beams and show that, by adequately choosing the parameters in the superposition, effects as opposite as autofocusing and quasi-adiffractional propagation may be obtained. We also give a simple analytical expression for free propagation of any initial field, based on so-called number states (eigenstates of the quantum harmonic oscillator), that allows us to study their self-healing properties.

3.
Sci Rep ; 9(1): 16800, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31727913

ABSTRACT

This contribution has two main purposes. First, using classical optics we show how to model two coupled quantum harmonic oscillators and two interacting quantized fields. Second, we present classical analogs of coupled harmonic oscillators that correspond to anisotropic quadratic graded indexed media in a rotated reference frame, and we use operator techniques, common to quantum mechanics, to solve the propagation of light through a particular type of graded indexed medium. Additionally, we show that the system presents phase transitions.

4.
Entropy (Basel) ; 21(1)2019 Jan 10.
Article in English | MEDLINE | ID: mdl-33266765

ABSTRACT

The Araki-Lieb inequality is commonly used to calculate the entropy of subsystems when they are initially in pure states, as this forces the entropy of the two subsystems to be equal after the complete system evolves. Then, it is easy to calculate the entropy of a large subsystem by finding the entropy of the small one. To the best of our knowledge, there does not exist a way of calculating the entropy when one of the subsystems is initially in a mixed state. For the case of a two-level atom interacting with a quantized field, we show that it is possible to use the Araki-Lieb inequality and find the von Neumann entropy for the large (infinite) system. We show this in the two-level atom-field interaction.

5.
Sci Rep ; 8(1): 8401, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29849080

ABSTRACT

Using the Ermakov-Lewis invariants appearing in KvN mechanics, the time-dependent frequency harmonic oscillator is studied. The analysis builds upon the operational dynamical model, from which it is possible to infer quantum or classical dynamics; thus, the mathematical structure governing the evolution will be the same in both cases. The Liouville operator associated with the time-dependent frequency harmonic oscillator can be transformed using an Ermakov-Lewis invariant, which is also time dependent and commutes with itself at any time. Finally, because the solution of the Ermakov equation is involved in the evolution of the classical state vector, we explore some analytical and numerical solutions.

6.
Sci Rep ; 6: 38961, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27941846

ABSTRACT

We show how to produce a fast quantum Rabi model with trapped ions. Its importance resides not only in the acceleration of the phenomena that may be achieved with these systems, from quantum gates to the generation of nonclassical states of the vibrational motion of the ion, but also in reducing unwanted effects such as the decay of coherences that may appear in such systems.

7.
Nat Commun ; 7: 11027, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-27006089

ABSTRACT

Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

8.
Sci Rep ; 5: 17339, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26610864

ABSTRACT

Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed.

9.
Opt Express ; 21(15): 17951-60, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23938667

ABSTRACT

We introduce a new class of paraxial optical beams exhibiting discrete-like diffraction patterns reminiscent to those observed in periodic evanescently coupled waveguide lattices. It is demonstrated that such paraxial beams are analytically described in terms of generalized Bessel functions. Such effects are elucidated via pertinent examples.


Subject(s)
Models, Theoretical , Refractometry/methods , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
10.
Opt Lett ; 37(18): 3801-3, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-23041864

ABSTRACT

We report the first experimental implementation of Glauber-Fock oscillator lattices. Bloch-like revivals are observed in these optical structures in spite of the fact that the photonic array is effectively semi-infinite and the waveguide coupling is not uniform. This behavior is entirely analogous to the dynamics exhibited by a driven quantum harmonic oscillator. Our observations are in excellent agreement to the analytical results obtained in this fully integrable lattice system.

11.
Phys Rev Lett ; 107(10): 103601, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21981502

ABSTRACT

Coherent states and their generalizations, displaced Fock states, are of fundamental importance to quantum optics. Here we present a direct observation of a classical analogue for the emergence of these states from the eigenstates of the harmonic oscillator. To this end, the light propagation in a Glauber-Fock waveguide lattice serves as equivalent for the displacement of Fock states in phase space. Theoretical calculations and analogue classical experiments show that the square-root distribution of the coupling parameter in such lattices supports a new family of intriguing quantum correlations not encountered in uniform arrays. Because of the broken shift invariance of the lattice, these correlations strongly depend on the transverse position. Consequently, quantum random walks with this extra degree of freedom may be realized in Glauber-Fock lattices.

12.
Opt Express ; 19(17): 16448-54, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21935009

ABSTRACT

We investigate the propagation of Airy beams in linear gradient index inhomogeneous media. We demonstrate that by controlling the gradient strength of the medium it is possible to reduce to zero their acceleration. We show that the resulting Airy wave beam propagates in straight line due to the balance between two opposite effects, one due to the inhomogeneous medium and the other to the diffraction of the beam, in a similar way as a solitary wave in a nonlinear inhomogeneous medium. Going even further we were able to invert the sign of the acceleration of the beam.

13.
Opt Lett ; 35(14): 2409-11, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20634846

ABSTRACT

We show that classical analogs to quantum coherent and displaced Fock states can emerge in one-dimensional semi-infinite photonic lattices having a square root law for the coupling coefficients. Beam dynamics in these fully integrable structures is described in closed form, irrespective of the site of excitation. The trajectories of these beams are closely examined, and pertinent examples are provided for their realization.

SELECTION OF CITATIONS
SEARCH DETAIL
...