Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 20: 5729-5739, 2022.
Article in English | MEDLINE | ID: mdl-36382195

ABSTRACT

End-Stage Renal Disease (ESRD) patients require arteriovenous fistulas (AVF) that allow a mature vein to withstand hemodialysis. Unfortunately, venous thrombosis and stenosis in the cephalic vein arch after AVF placement is common and heavily influenced by hemodynamics. To better assess forces and flow behavior in the cephalic arch, we have built patient-specific millifluidic models that allow us to explore the complex interplay between patient-specific vein geometry and fluctuating hemodynamics. These 3D models were created from patient-specific intravascular ultrasound and venogram images obtained three- and twelve-months post AVF creation and fabricated into soft elastomer-based millifluidic devices. Geometric validation of fabricated phantom millifluidic device shows successful replication of original computational 3D model. Millifluidic devices were perfused with a blood-mimicking fluid containing fluorescent tracer beads under steady-state physiologic cephalic vein flow conditions (20 mL/min). Particle image velocimetry was employed to calculate wall shear stress (WSS) across the cephalic arches. Experimental WSS profile evaluation reveals that the physiologic cephalic arch model yields WSS values within physiologic range [76-760 mPa]. Moreover, upon comparing WSS profiles across all models, it is noticeable that WSS values increase as vein diameter decreases, which further supports employed experimental and analysis strategy. The presented millifluidic devices show promise for experimental WSS characterization under pathologic flow conditions to contrast from calculated physiologic hemodynamics and better understand WSS influence on thrombosis and stenosis in hemodialysis patients.

2.
PLoS One ; 16(7): e0254016, 2021.
Article in English | MEDLINE | ID: mdl-34260609

ABSTRACT

BACKGROUND: The most common configuration for arteriovenous fistula is brachiocephalic which often develop cephalic arch stenosis leading to the need for numerous procedures to maintain access patency. The hemodynamics that contributes to the development of cephalic arch stenosis is incompletely understood given the inability to accurately determine shear stress in the cephalic arch. In the current investigation our aim was to determine pressure, velocity and wall shear stress profiles in the cephalic arch in 3D using computational modeling as tools to understand stenosis. METHODS: Five subjects with brachiocephalic fistula access had protocol labs, Doppler, venogram and intravascular ultrasound imaging performed at 3 and 12 months. 3D reconstructions of the cephalic arch were generated by combining intravascular ultrasounds and venograms. Standard finite element analysis software was used to simulate time dependent blood flow in the cephalic arch with velocity, pressure and wall shear stress profiles generated. RESULTS: Our models generated from imaging and flow measurements at 3 and 12 months offer snapshots of the patient's cephalic arch at a precise time point, although the remodeling of the vessel downstream of an arteriovenous fistula in patients undergoing regular dialysis is a dynamic process that persists over long periods of time (~ 5 years). The velocity and pressure increase at the cephalic bend cause abnormal hemodynamics most prominent along the inner wall of the terminal cephalic arch. The topology of the cephalic arch is highly variable between subjects and predictive of pathologic stenosis at later time points. CONCLUSIONS: Low flow velocity and wall pressure along the inner wall of the bend may provide possible nidus of endothelial activation that leads to stenosis and thrombosis. In addition, 3D modelling of the arch can indicate areas of stenosis that may be missed by venograms alone. Computational modeling reconstructed from 3D radiologic imaging and Doppler flow provides important insights into the hemodynamics of blood flow in arteriovenous fistula. This technique could be used in future studies to determine optimal flow to prevent endothelial damage for patients with arteriovenous fistula access.


Subject(s)
Arteriovenous Fistula/physiopathology , Brachiocephalic Veins/physiopathology , Computer Simulation , Hemodynamics/physiology , Renal Dialysis , Adult , Blood Flow Velocity/physiology , Brachial Artery/diagnostic imaging , Brachial Artery/physiopathology , Constriction, Pathologic , Female , Follow-Up Studies , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Models, Biological , Pulsatile Flow/physiology , Young Adult
3.
Proc Natl Acad Sci U S A ; 114(35): E7262-E7271, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28808001

ABSTRACT

The dimeric 44-residue E5 protein of bovine papillomavirus is the smallest known naturally occurring oncoprotein. This transmembrane protein binds to the transmembrane domain (TMD) of the platelet-derived growth factor ß receptor (PDGFßR), causing dimerization and activation of the receptor. Here, we use Rosetta membrane modeling and all-atom molecular dynamics simulations in a membrane environment to develop a chemically detailed model of the E5 protein/PDGFßR complex. In this model, an active dimer of the PDGFßR TMD is sandwiched between two dimers of the E5 protein. Biochemical experiments showed that the major PDGFßR TMD complex in mouse cells contains two E5 dimers and that binding the PDGFßR TMD to the E5 protein is necessary and sufficient to recruit both E5 dimers into the complex. These results demonstrate how E5 binding induces receptor dimerization and define a molecular mechanism of receptor activation based on specific interactions between TMDs.


Subject(s)
Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/metabolism , Receptor, Platelet-Derived Growth Factor beta/physiology , Amino Acid Sequence , Animals , Cattle , Cell Line , Cell Transformation, Viral , Dimerization , Humans , Membrane Proteins/metabolism , Mice , Molecular Conformation , Papillomaviridae/metabolism , Papillomavirus Infections , Protein Multimerization , Receptor, Platelet-Derived Growth Factor beta/metabolism
4.
Mol Biotechnol ; 57(11-12): 1050-62, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26482241

ABSTRACT

A poly-Lys tag was fused to the Lucina pectinata hemoglobin I (HbI) coding sequence and purified using an efficient and fast process. HbI is a hemeprotein that binds hydrogen sulfide (H2S) with high affinity and it has been used to understand physiologically relevant reactions of this signaling molecule. The (Lys)6-tagged rHbI construct was expressed in E. coli and purified by immobilization on a cation exchange matrix, followed by size-exclusion chromatography. The identity, structure, and function of the (Lys)6-tagged rHbI were assessed by mass spectrometry, small and wide X-ray scattering, optical spectroscopy, and kinetic analysis. The scattering and spectroscopic results showed that the (Lys)6-tagged rHbI is structurally and functionally analogous to the native protein as well as to the (His)6-tagged rHbI. Kinetics studies with H2S indicated that the association (k on) and dissociation (k off) rate constants were 1.4 × 10(5)/M/s and 0.1 × 10(-3)/s, respectively. This results confirmed that the (Lys)6-tagged rHbI binds H2S with the same high affinity as its homologue.


Subject(s)
Bivalvia/metabolism , Cloning, Molecular , Hemoglobins/metabolism , Sulfides/chemistry , Amino Acid Sequence , Animals , Bivalvia/genetics , Escherichia coli/genetics , Gene Expression Regulation , Hemeproteins/chemistry , Hemoglobins/genetics , Hydrogen Sulfide/chemistry , Membrane Fusion Proteins/genetics , Membrane Fusion Proteins/metabolism , Molecular Sequence Data , Protein Conformation , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...