Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Leukemia ; 17(9): 1765-82, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12970777

ABSTRACT

The Raf/MEK/ERK and PI3K/Akt pathways regulate proliferation and prevent apoptosis, and their altered expression is commonly observed in human cancer due to the high mutation frequency of upstream regulators. In this study, the effects of Raf, MEK, and PI3K inhibitors on conditionally transformed hematopoietic cells were examined to determine if they would display cytotoxic differences between cytokine- and oncogene-mediated proliferation, and whether inhibition of both pathways was a more effective means to induce apoptosis. In the hematopoietic model system employed, proliferation was conditional and occurred when either interleukin-3 (IL-3) or the estrogen receptor antagonist 4-hydroxytamoxifen (4HT), which activates the conditional oncoprotein (DeltaRaf:ER), were provided. Thus, upon the addition of the signal transduction inhibitors and either IL-3 or 4HT, the effects of these drugs were examined in the same cell under 'cytokine-' and 'oncoprotein' -mediated growth conditions avoiding genetic and differentiation stage heterogeneity. At drug concentrations around the reported IC(50) for the Raf inhibitor L-779,450, it suppressed DNA synthesis and induced apoptosis in hematopoietic FDC-P1 cells transformed to grow in response to either Raf-1 or A-Raf (FD/DeltaRaf-1:ER and FD/DeltaA-Raf:ER), but it displayed less effects on DNA synthesis and apoptosis when the cells were cultured in IL-3. This Raf inhibitor was less effective on B-Raf- or MEK1-responsive cells, demonstrating the specificity of this drug. MEK inhibitors also suppressed DNA synthesis and induced apoptosis in Raf-responsive cells and the effects were more significant on Raf-responsive compared to cytokine-mediated growth. The PI3K inhibitor LY294002 suppressed Raf-mediated growth, indicating that part of the long-term proliferative effects mediated by Raf are PI3K dependent. Simultaneous inhibition of both Raf/MEK/ERK and PI3K/Akt pathways proved a more efficient means to suppress DNA synthesis and induce apoptosis at lower drug concentrations.


Subject(s)
Enzyme Inhibitors/pharmacology , Interleukin-3/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Myeloid Cells/drug effects , Phosphoinositide-3 Kinase Inhibitors , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Animals , Apoptosis , Blotting, Western , Cell Division/drug effects , Cell Line, Transformed/drug effects , Cell Line, Transformed/metabolism , Cell Line, Transformed/pathology , Enzyme Activation , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Myeloid Cells/metabolism , Myeloid Cells/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-raf/metabolism , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism
2.
Leukemia ; 17(6): 1058-67, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12764369

ABSTRACT

The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using DeltaMEK1:ER, a conditionally active form of MEK1 which responds to either beta-estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented the ability of this dual specificity protein kinase to abrogate the cytokine-dependency of human (TF-1) and murine (FDC-P1 and FL5.12) hematopoietic cells lines. Here we demonstrate the ability of DeltaMEK1:ER to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70(S6K)) pathway and the importance of this pathway in MEK1-mediated prevention of apoptosis. MEK1-responsive cells can be maintained long term in the presence of beta-estradiol, 4HT or IL-3. Removal of hormone led to the rapid cessation of cell proliferation and the induction of apoptosis in a manner similar to cytokine deprivation of the parental cells. Stimulation of DeltaMEK1:ER by 4HT resulted in ERK, PI3K, Akt and p70(S6K) activation. Treatment with PI3K, Akt and p70(S6K) inhibitors prevented MEK-responsive growth. Furthermore, the apoptotic effects of PI3K/Akt/p70(S6K) inhibitors could be enhanced by cotreatment with MEK inhibitors. Use of a PI3K inhibitor and a constitutively active form of Akt, [DeltaAkt(Myr(+))], indicated that activation of PI3K was necessary for MEK1-responsive growth and survival as activation of Akt alone was unable to compensate for the loss of PI3K activity. Cells transduced by MEK or MEK+Akt displayed different sensitivities to signal transduction inhibitors, which targeted these pathways. These results indicate a requirement for the activation of the PI3K pathway during MEK-mediated transformation of certain hematopoietic cells. These experiments provide important clues as to why the identification of mutant signaling pathways may be the Achilles heel of leukemic cell growth. Leukemia treatment targeting multiple signal transduction pathways may be more efficacious than therapy aimed at inhibiting a single pathway.


Subject(s)
Apoptosis/drug effects , Interleukin-3/pharmacology , Leukemia, Myeloid/metabolism , Mitogen-Activated Protein Kinase Kinases/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Proto-Oncogene Proteins/metabolism , Signal Transduction/drug effects , Tumor Cells, Cultured/metabolism , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Cell Division/drug effects , Enzyme Inhibitors/pharmacology , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/pathology , MAP Kinase Kinase 1 , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-raf/metabolism , Receptors, Estrogen/metabolism , Retroviridae , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/physiology , Tumor Cells, Cultured/drug effects
3.
Cancer Detect Prev ; 25(4): 375-93, 2001.
Article in English | MEDLINE | ID: mdl-11531015

ABSTRACT

The PI3K/Akt and Raf/MEK/ERK signal transduction cascades are pivotal in transmitting signals from membrane receptors to downstream targets that regulate apoptosis, gene expression, and cell growth. The abilities of activated PI3K, Akt, Raf, and MEK proteins to abrogate the cytokine dependence of three different hematopoietic cell lines were determined. Activated PI3K or Akt expression by themselves did not efficiently annul cytokine dependence. Raf and MEK could abrogate the cytokine dependence of murine FDC-PI and human TF-1 cells; however, the frequency of transformation was dependent on the particular oncogene examined, as more factor-independent cells were isolated after infection with activated retroviruses encoding A-Raf or Raf-1 than were with MEK1 or B-Raf. Cytokine-independent deltaRaf-1-infected cells formed tumors on injection into immunocompromised mice, whereas cytokine-dependent cell lines did not, demonstrating the oncogenic effects of activation of the Raf/MEK/ERK pathway. Overexpression of the antiapoptotic Bcl-2 protein synergized with activation of the Raf/MEK/ERK cascade and increased the efficiency of transformation of FDC-PI and TF-1 cells. In contrast to the results observed with FDC-P1 and TF-I cells, the activated Raf genes did not relieve the cytokine dependence of murine FL5.12 cells. The abilities of the Raf and PI3K pathways to interact and annul the cytokine dependence of FL5.12 cells were determined. The combination of Raf and either PI3K or Akt expression relieved cytokine dependence of some FL5.12 cells, and the efficiency of transformation could be enhanced further by Bcl-2 or Bcl-XL overexpression. Thus, the antiapoptotic PI3K/Akt and Bcl-2/Bcl-XL proteins can interact with the growth-promoting Raf/MEK/ERK pathway and annul the cytokine dependence of certain hematopoietic cells.


Subject(s)
Hematopoietic Stem Cells/physiology , MAP Kinase Kinase Kinase 1 , Phosphatidylinositol 3-Kinases/physiology , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins c-raf/physiology , Proto-Oncogene Proteins/physiology , Signal Transduction/physiology , Animals , Apoptosis/immunology , Gene Expression , Hematopoietic Stem Cells/cytology , Humans , Mice , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt
4.
Leukemia ; 15(8): 1203-16, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11480562

ABSTRACT

Modified and chimeric cytokines have been developed to aid in the recovery of hematopoietic precursor cells after myeloablative chemotherapy. The interleukin-3 (IL-3) receptor agonist, daniplestim, binds to the IL-3 receptor-alpha subunit with 60-fold greater affinity and induces cell proliferation and colony-forming unit formation 10- to 22-fold better than native IL-3. A chimeric cytokine, myelopoietin-1, composed of daniplestim and a G-CSF receptor agonist binds both the IL-3 and G-CSF receptors. While the in vivo effects of daniplestim and myelopoietin-1 are well described, the mechanisms by which they stimulate growth are not well understood. We have investigated the effects of daniplestim and myelopoietin-1 on the prevention of apoptosis in two human hematopoietic cell lines, OCI-AML.5 and AML 193. Daniplestim and myelopoietin-1 prevented apoptosis to a greater degree than native recombinant IL-3 or G-CSF as determined by annexin V/propidium iodide binding and TUNEL assays. Daniplestim and myelopoietin-1 promoted the maintenance of the mitochondrial membrane potential better than native IL-3 or G-CSF. These cytokines promoted a lower redox potential as higher levels of free radicals were detected after cytokine treatment than in cytokine-deprived cells implying increased respiration. These results indicate that daniplestim and myelopoietin-1 are able to prevent apoptosis in hematopoietic cells more effectively than native IL-3 and G-CSF. These effects of daniplestim and myelopoietin-1 may contribute to their effective ability to repopulate hematopoietic precursor cells after chemotherapy.


Subject(s)
Apoptosis/drug effects , Hematopoietic Cell Growth Factors/pharmacology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Peptides/pharmacology , Recombinant Fusion Proteins , Cell Differentiation , Cell Lineage , Granulocyte Colony-Stimulating Factor , Hematopoiesis , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cell Transplantation , Humans , Interleukin-3 , Peptide Fragments , Recombinant Proteins
6.
Leukemia ; 14(11): 1921-38, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11069028

ABSTRACT

The effects of deregulated Raf activation on the growth and differentiation of hematopoietic cells were investigated. The cytokine-dependent murine myeloid FDC-P1 and human erythroleukemic TF-1 cell lines were transformed to grow in response to deregulated Raf expression in the absence of exogenous cytokines. The conditionally active Raf proteins were regulated by beta-estradiol as cDNAs containing the Raf catalytic, but lacking negative-regulatory domains, were ligated to the hormone binding domain of the estrogen receptor (deltaRaf:ER). Continuous deltaRaf expression prevented apoptosis in the absence of exogenous cytokines and altered the morphology of the FD/deltaRaf:ER cells as they grew in large aggregated masses (>100 cells) whereas the parental cytokine-dependent FDC-P1 cells grew in smaller grape-like clusters (< 10 cells). FD/deltaRaf-1:ER cells growing in response to Raf activation displayed decreased levels of the Mac-2 and Mac-3 molecules on their cell surface. In contrast, when these cells were cultured in IL-3, higher levels of these adhesion molecules were detected. Expression of activated Raf oncoproteins also abrogated cytokine dependency and prevented apoptosis of TF-1 cells. Moreover, the differentiation status of these Raf-responsive cells was more immature upon Raf activation as culture with the differentiation-inducing agent phorbol 12 myristate 13-acetate (PMA) and beta-estradiol resulted in decreased levels of the CD11b and CD18 integrin molecules on the cell surface. In contrast when the Raf-responsive cells were induced to differentiate with PMA and GM-CSF, in the absence of deltaRaf:ER activation, increased levels of the CD11b and CD18 molecules were detected. Retinoic acid (RA) inhibited 3H-thymidine incorporation in response to GM-CSF. Interestingly, Raf activation counterbalanced the inhibition of DNA synthesis caused by RA but not PMA. Thus deregulated Raf expression can alter cytokine dependency, integrin expression and the stage of differentiation. These Raf-responsive cell lines will be useful in elucidating the roles of the MAP kinase cascade on hematopoietic cell differentiation and malignant transformation.


Subject(s)
Apoptosis/drug effects , Integrins/biosynthesis , Myeloid Progenitor Cells/drug effects , Proto-Oncogene Proteins c-raf/metabolism , Receptors, Cytokine/biosynthesis , Animals , CD11 Antigens/biosynthesis , CD11 Antigens/genetics , Cell Aggregation/drug effects , Cell Differentiation/drug effects , Cell Size/drug effects , DNA Replication/drug effects , DNA, Complementary/genetics , Enzyme Activation , Estradiol/pharmacology , Gene Expression Regulation/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Integrins/genetics , Interleukin-3/pharmacology , Leukemia, Erythroblastic, Acute/pathology , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Mice , Mice, Inbred DBA , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Myeloid Progenitor Cells/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Protein Subunits , Proto-Oncogene Proteins c-raf/genetics , Receptors, Cytokine/genetics , Receptors, Estrogen/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , Tetradecanoylphorbol Acetate/pharmacology , Transfection , Tretinoin/pharmacology , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/metabolism
8.
Leukemia ; 14(6): 1060-79, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10865973

ABSTRACT

The Raf oncoprotein plays critical roles in the transmission of mitogenic signals from cytokine receptors to the nucleus. There are three Raf family members: A-Raf, B-Raf and Raf-1. Conditionally active forms of the Raf proteins were created by ligating N-terminal truncated activated forms to the estrogen-receptor (ER) hormone-binding domain resulting in beta-estradiol-inducible constructs. We introduced these chimeric deltaRaf:ER oncoproteins into the murine FDC-P1 hematopoietic cell line. Two different types of cells were recovered after drug selection in medium containing either cytokine or beta-estradiol: (1) cytokine-dependent cells that expressed the deltaRaf:ER oncoproteins; and (2) Raf-responsive cells that grew in response to the deltaRaf:ER oncoprotein. Depending upon the particular deltaRaf:ER oncoprotein, cytokine-dependent cells were recovered 10(3) to 10(5) times more frequently than Raf-responsive cells. To determine whether BCL2 could synergize with the deltaRaf:ER oncoproteins and increase the frequency of cytokine-independent cells, cytokine-dependent deltaRaf:ER-expressing cells were infected with either a BCL2 containing retrovirus or an empty retroviral vector. BCL2 overexpression, by itself, did not relieve cytokine dependency of the parental cell line. However, BCL2 overexpression increased the frequency of Raf-responsive cells approximately five- to 100-fold. Cytokine-dependent deltaRaf:ER-infected cells entered the G1 phase of the cell cycle after cytokine withdrawal and entered S phase only after cytokine addition. Raf-responsive deltaRaf:ER cells entered the G1 phase of the cell cycle after estrogen deprivation and re-entered the cell cycle after addition of either IL-3 or the estrogen receptor antagonist tamoxifen which activates the deltaRaf:ER constructs. Expression of the BCL2 oncoprotein often delayed the exit from the S and G2/M phases demonstrating the protective effects BCL2 provided to these Raf and BCL2 infected cells. The deltaRaf:ER cells expressed the deltaRaf:ER proteins and downstream MEK and ERK activities after beta-estradiol treatment. Raf-responsive cells that were also infected with BCL2 expressed higher levels of BCL2 than the cells that were not infected with BCL2. Thus BCL2 can synergize with the activated Raf in the abrogation of cytokine dependency of certain hematopoietic cells. These cells will be useful in furthering our understanding of the roles of the Raf and BCL2 oncoproteins in hematopoietic cell growth, cell cycle progression and prevention of apoptosis.


Subject(s)
Bone Marrow Cells/metabolism , Cytokines/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Retroviridae Proteins, Oncogenic/metabolism , Apoptosis/physiology , Base Sequence , DNA Primers , Estradiol/pharmacology , Humans , Interleukin-3/pharmacology , Oncogene Proteins v-raf , Protein Binding , Retroviridae Proteins, Oncogenic/physiology , Thymidine/metabolism
9.
Leukemia ; 14(6): 1080-96, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10865974

ABSTRACT

The MEK1 oncoprotein plays a critical role in Ras/Raf/MEK/MAPK-mediated transmission of mitogenic signals from cell surface receptors to the nucleus. In order to examine this pathway's role in leukemic transformation, a conditionally active (beta-estradiol-inducible) form of the MEK1 protein was created by ligating a cDNA encoding an N-terminal truncated form of MEK1 to the hormone-binding domain of the estrogen receptor (ER). We introduced this chimeric deltaMEK1:ER oncoprotein into cytokine-dependent human TF-1 and murine FDC-P1 hematopoietic cell lines. Two different types of cells were recovered after drug selection in medium containing either cytokine or beta-estradiol: (1) cells that expressed the deltaMEK1:ER oncoprotein but remained cytokine-dependent and (2) MEK1-responsive cells that grew in response to deltaMEK1:ER activation. Cytokine-dependent cells were recovered 10(2) to 10(4) times more frequently than MEK1-responsive cells depending upon the particular cell line. To determine whether BCL2 overexpression could synergize with the deltaMEK1:ER oncoprotein in relieving cytokine dependence, the cytokine-dependent deltaMEK1:ER-expressing cells were infected with a BCL2-containing retrovirus, and the frequency of MEK1-responsive cells determined. BCL2 overexpression, by itself, did not relieve cytokine dependency of the parental cells, however, it did increase the frequency at which MEK1-responsive cells were recovered approximately 10-fold. DeltaMEK1:ER+BCL2 cells remained viable for at least 3 days after estradiol deprivation, whereas viability was readily lost upon withdrawal of beta-estradiol in the MEK1-responsive cells which lacked BCL2 overexpression. The MAP kinases, ERK1 and ERK2 were activated in response to deltaMEK1:ER stimulation in both deltaMEK1:ER and deltaMEK1:ER+BCL2 cells. As compared to the cytokine-dependent deltaMEK1:ER and BCL2 infected cells, MEK1-responsive BCL2 infected cells expressed higher levels of BCL2. While both MEK1-responsive deltaMEK1:ER and deltaMEK1:ER+BCL2 infected cells expressed cDNAs encoding the autocrine cytokine GM-CSF, more GM-CSF cDNAs and bioactivity were detected in the MEK1-responsive deltaMEK1:ER+BCL2 cells than in the MEK1-responsive cells lacking BCL2 or cytokine-dependent cells. These conditionally transformed cells will be useful in furthering our understanding of the roles MEK1 and BCL2 play in the prevention of apoptosis in hematopoietic cells.


Subject(s)
Bone Marrow Cells/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Interleukin-3/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Apoptosis/physiology , Base Sequence , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cell Cycle/drug effects , Cell Division/physiology , Cell Line , DNA Primers , DNA, Complementary , Estradiol/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , MAP Kinase Kinase 1 , Mice , Phosphorylation , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , Thymidine/metabolism
10.
Leukemia ; 14(4): 642-56, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10764150

ABSTRACT

In this study, the abilities of constitutive and conditional forms of the three Raf kinases to abrogate the cytokine dependency of FDC-P1 cells were examined. The constitutively active forms (delta) of all three Raf kinases were fused to the hormone-binding domain of the estrogen receptor (ER), rendering their activities conditionally dependent upon exogenous beta-estradiol. The vast majority of deltaRaf:ER-infected FDC-P1 cells remained cytokine-dependent; however, cells were obtained at low frequency in which expression of deltaRaf:ER abrogated cytokine dependency. Isoform specific differences between the Raf kinases were observed as cytokine-independent cells were obtained more frequently from deltaA-Raf:ER than either deltaRaf-1:ER or deltaB-Raf:ER infected cells. To determine whether the regulatory phosphorylation sites in the Raf proteins were necessary for abrogation of cytokine dependency, they were changed by site-directed mutagenesis. Substitution with phenylalanine eliminated the transforming ability of the deltaB-Raf:ER and deltaRaf-1:ER kinases. However, a similar substitution in A-Raf did not extinguish its transforming activity. The activated Raf proteins induced essential downstream MEK1 activity as treatment with the MEK1 inhibitor, PD98059, suppressed Raf-mediated growth. Activated MAP kinases (ERK1 and ERK2) were detected in deltaRaf:ER-transformed cells, and their presence was dependent upon a functional MEK1 protein. The cytokine-independent phenotype required the continued activity of the deltaRaf:ER proteins as removal of beta-estradiol caused the cells to stop growing and undergo apoptosis. The Raf-responsive cells were found to express autocrine growth factors, which promoted their growth. Constitutive activation of the Raf-1 oncogene resulted in malignant transformation as cytokine-independent FDC-P1 cells infected with a retrovirus encoding an activated Raf-1 protein formed tumors upon injection of immunocompromised mice. In summary, Raf kinases can abrogate cytokine dependency, prevent apoptosis and induce the tumorigenicity of a certain subpopulation of FDC-P1 cells by a MEK1-dependent mechanism.


Subject(s)
Apoptosis/physiology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cells/cytology , Interleukin-3/pharmacology , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase Kinases/physiology , Multigene Family , Protein Isoforms/physiology , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins c-raf/physiology , Animals , Autocrine Communication , Cell Division/drug effects , Cell Line , Cell Line, Transformed , Cell Transformation, Neoplastic/genetics , Dimethyl Sulfoxide/pharmacology , Enzyme Activation/drug effects , Estradiol/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , MAP Kinase Kinase 1 , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Protein Isoforms/genetics , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-raf/genetics , Recombinant Fusion Proteins/physiology , Tetradecanoylphorbol Acetate/pharmacology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...