Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 106(5): 1374-1380, 2022 May.
Article in English | MEDLINE | ID: mdl-34879724

ABSTRACT

Citrus black spot (CBS), caused by Phyllosticta citricarpa, is an economically important disease, which is effectively controlled by repeated fungicide applications to protect fruit from infection. Systemic fungicides such as benzimidazoles are widely used for controlling CBS in South Africa, but the molecular mechanisms of benzimidazole resistance in P. citricarpa had not been investigated. Analysis of the nucleotide sequence of the ß-tubulin gene in P. citricarpa revealed mutations inducing three amino acid replacements in benzimidazole-resistant isolates when compared with those of sensitive strains. Amino acid replacements in benzimidazole-resistant isolates included the change of glutamic acid to either alanine or lysine at codon 198 of the ß-tubulin gene and the change from phenylalanine to tyrosine at codon 200. All three mutations were previously implicated in benzimidazole resistance in several fungal pathogens. A PCR assay was designed to amplify a portion of the ß-tubulin gene, which is subsequently sequenced to identify benzimidazole resistance in P. citricarpa. This PCR and sequence assay was found to be a more rapid and reliable method for detecting resistance compared with the fungicide-amended plate tests and is valuable for monitoring the occurrence of benzimidazole-resistant P. citricarpa and for assessment of the need for alternative CBS management practices.


Subject(s)
Citrus , Fungicides, Industrial , Amino Acids/genetics , Ascomycota , Benzimidazoles/pharmacology , Citrus/microbiology , Codon , Fungicides, Industrial/pharmacology , Mutation , Plant Diseases/microbiology , Tubulin/genetics
2.
Plant Dis ; 105(12): 4060-4073, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34156267

ABSTRACT

A recent olive trunk disease survey performed in the Western Cape Province, South Africa, identified several fungi associated with olive trunk disease symptoms, including species of Basidiomycota, Botryosphaeriaceae, Coniochaetaceae, Calosphaeriaceae, Diaporthaceae, Diatrypaceae, Phaeomoniellaceae, Phaeosphaeriaceae, Symbiotaphrinaceae, Togniniaceae, and Valsaceae. Many of the species recovered had not yet been reported from olive trees; therefore, the aim of this study was to determine their pathogenicity toward this host. Pathogenicity tests were first conducted on detached shoots to select virulent isolates, which were then used in field trials. During field trials, 2-year-old olive branches of 15-year-old trees were inoculated by inserting colonized agar plugs into artificially wounded tissue. Measurements were made of the internal lesions after 8 months. In total, 58 isolates were selected for the field trials. Species that formed lesions significantly larger than the control could be considered as olive trunk pathogens. These included Biscogniauxia rosacearum, Celerioriella umnquma, Coniochaeta velutina, Coniothyrium ferrarisianum, isolates of the Cytospora pruinosa complex, Didymocyrtis banksiae, Diaporthe foeniculina, Eutypa lata, Fomitiporella viticola, Neofusicoccum stellenboschiana, Neofusicoccum vitifusiforme, Neophaeomoniella niveniae, Phaeoacremonium africanum, Phaeoacremonium minimum, Phaeoacremonium oleae, Phaeoacremonium parasiticum, Phaeoacremonium prunicola, Phaeoacremonium scolyti, Phaeoacremonium spadicum, Pleurostoma richardsiae, Pseudophaeomoniella globosa, Punctularia atropurpurascens, Vredendaliella oleae, an undescribed Cytospora sp., Geosmithia sp., two undescribed Neofusicoccum spp., and four Xenocylindrosporium spp. Pseudophaeomoniella globosa can be regarded as one of the main olive trunk pathogens in South Africa because of its high incidence from olive trunk disease symptoms in established orchards and its high virulence in pathogenicity trials.


Subject(s)
Olea , Plant Diseases , South Africa , Virulence
3.
Plants (Basel) ; 9(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371400

ABSTRACT

Citrus black spot (CBS) is caused by Phyllosticta citricarpa, which is classified as a quarantine organism in certain countries whose concerns are that CBS-infected fruit may be a pathway for introduction of the pathogen. This study evaluated the reproductive capability and viability of P. citricarpa under simulated conditions in which the whole fruit, peel segments, or citrus pulp with CBS lesions were discarded. Naturally infected 'Midknight' Valencia orange and 'Eureka' lemon fruit, either treated using standard postharvest sanitation, fungicide, and wax coating treatments or untreated, were placed into cold storage for 5 weeks (oranges at 4 °C and lemons at 7 °C). Thereafter, treated and untreated fruit were incubated for a further 2 weeks at conditions conducive for CBS symptom expression and formation of pycnidia. The ability of pycnidia to secrete viable pycnidiospores after whole fruit and peel segments or peel pieces from citrus pulp were exposed to sunlight at warm temperatures (±28 °C) and ±75% relative humidity levels was then investigated. The combination of postharvest treatments and cold storage effectively controlled CBS latent infections (>83.6% control) and pycnidium formation (<1.4% of lesions formed pycnidia), and the wax coating completely inhibited pycnidiospore release in fruit and peel segments. Pycnidiospores were secreted only from lesions on untreated fruit and peel segments and at low levels (4.3-8.6%) from peel pieces from pulped treated fruit. However, spore release rapidly declined when exposed to sunlight conditions (1.4% and 0% after 2 and 3 days, respectively). The generally poor reproductive ability and viability of CBS fruit lesions on harvested fruit, particularly when exposed to sunlight conditions, supports the conclusion that citrus fruit without leaves is not an epidemiologically significant pathway for the entry, establishment, and spread of P. citricarpa.

4.
Plant Dis ; 103(5): 808-817, 2019 May.
Article in English | MEDLINE | ID: mdl-30920350

ABSTRACT

Diaporthe species cause Phomopsis cane and leaf spot as well as Phomopsis dieback on grapevines. Symptoms of Phomopsis dieback have increasingly been observed over the past few years. In order to assess the current status of Diaporthe on grapevines in the Western Cape Province of South Africa, isolations were made from dormant grafted nursery vines, dormant rootstock canes, and dying or dead spurs of field vines. Cultures identified as Diaporthe based on morphological features were further identified to species level by sequencing the internal transcribed spacers (ITS) 1 and 2 and 5.8S rRNA and, for a representative subsample of isolates, the partial beta-tubulin (tub2) and translation elongation factor 1-alpha (EF1-α) genes. Phylogenetic analysis of the combined ITS, tub2, and EF1-α data revealed nine Diaporthe species associated with grapevines during this survey. One of these represents a new species, D. nebulae sp. nov., and three other species, namely D. novem, D. cynaroidis, and D. serafiniae, are reported on grapevines in South Africa for the first time. Species-specific primers were designed for PCR identification of D. ampelina, D. ambigua, and D. foeniculina. Pathogenicity studies conducted on detached grapevine shoots indicated D. ampelina, D. novem, and D. nebulae sp. nov. as the most virulent species.


Subject(s)
Saccharomycetales , Vitis , DNA, Fungal/genetics , Genes, rRNA/genetics , Phylogeny , Plant Diseases/microbiology , Polymerase Chain Reaction , Saccharomycetales/classification , South Africa , Species Specificity , Vitis/microbiology
5.
Plant Dis ; 102(1): 220-230, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30673471

ABSTRACT

Recent studies in grape-growing areas including Australia, California, and Spain have revealed an extensive diversity of Diatrypaceae species on grapevines showing dieback symptoms and cankers. However, in South Africa, little is known regarding the diversity of these species in vineyards. The aim of this study was, therefore, to identify and characterize Diatrypaceae species associated with dieback symptoms of grapevine in South Africa. Isolates were collected from dying spurs of grapevines aged 4 to 8 years old, grapevine wood showing wedge-shaped necrosis when cut in cross section as well as from perithecia on dead grapevine wood. The collected isolates were identified based on morphological characters and phylogenetic analyses of the internal transcribed spacer region (ITS) and ß-tubulin gene. Seven Diatrypaceae species were identified on grapevine, namely Cryptovalsa ampelina, C. rabenhorstii, Eutypa consobrina, E. lata, E. cremea sp. nov., Eutypella citricola, and E. microtheca. The dying spurs yielded the highest diversity of species when compared with the wedge-shaped necrosis and/or perithecia. C. ampelina was the dominant species in the dying spurs, followed by E. citricola, whereas E. lata was the dominant species isolated from the wedge-shaped necroses and perithecia. These results confirm E. lata as an important grapevine canker pathogen in South Africa, but the frequent association of C. ampelina with spur dieback suggests that this pathogen plays a more prominent role in dieback than previously assumed. In some cases, more than one species were isolated from a single symptom, which suggests that interactions may be occurring leading to decline of grapevines. C. rabenhorstii, E. consobrina, E. citricola, E. microtheca, and E. cremea are reported for the first time on grapevine in South Africa.


Subject(s)
Plant Diseases/microbiology , Vitis/microbiology , Xylariales/classification , Xylariales/physiology , Fungal Proteins/analysis , Phylogeny , RNA, Fungal/analysis , South Africa , Tubulin/analysis , Xylariales/genetics
6.
Plant Dis ; 102(7): 1402-1409, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30673568

ABSTRACT

Stone fruit trees (Prunus spp.) are economically important fruit trees cultivated in South Africa. These trees are often grown in close proximity to vineyards and are to a large extent affected by the same trunk disease pathogens as grapevines. The aim of the present study was to determine whether stone fruit trees are inhabited by Diatrypaceae species known from grapevines and whether these trees could act as alternative hosts for these fungal species. Isolations were carried out from symptomatic wood of Prunus species (almond, apricot, cherry, nectarine, peach, and plum) in stone fruit growing areas in South Africa. Identification of isolates was based on phylogenetic analyses of the internal transcribed spacer region and ß-tubulin gene. Forty-six Diatrypaceae isolates were obtained from a total of 380 wood samples, from which five species were identified. All five species have also been associated with dieback of grapevine. The highest number of isolates was found on apricot followed by plum. No Diatrypaceae species were isolated from peach and nectarine. Eutypa lata was the dominant species isolated (26 isolates), followed by Cryptovalsa ampelina (7), Eutypa cremea (5), Eutypella citricola (5), and Eutypella microtheca (3). First reports from Prunus spp. are E. cremea, E. citricola, and E. microtheca. Pathogenicity tests conducted on apricot and plum revealed that all these species are pathogenic to these hosts, causing red-brown necrotic lesions like those typical of Eutypa dieback on apricot.


Subject(s)
Fruit/microbiology , Plant Diseases/microbiology , Prunus/microbiology , Vitis/microbiology , Xylariales/pathogenicity , DNA, Ribosomal Spacer/genetics , Fungal Proteins/genetics , Host Specificity/genetics , Phylogeny , Prunus/classification , South Africa , Species Specificity , Tubulin/genetics , Virulence/genetics , Wood/microbiology , Xylariales/classification , Xylariales/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...