Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(41): 16658-16668, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37800342

ABSTRACT

Biomarkers have the potential to be utilized in disease diagnosis, prediction and monitoring. The cancer cell type is a leading candidate for next-generation biomarkers. Although traditional digital biomolecular sensor (DBS) technology has shown to be effective in assessing cell-based interactions, low cell-population detection of cancer cell types is extremely challenging. Here, we controlled the electrical signature of a two-dimensional (2D) nanomaterial, tungsten disulfide (WS2), by utilizing a combination of the Phage-integrated Polymer and the Nanosheet (PPN), viz., the integration of the M13-conjugated polyethylene glycol (PEG) and the WS2, through shape-complementarity phenomena, and developed a sensor system, i.e., the Phage-based DBS (P-DBS), for the specific, rapid, sensitive detection of clinically-relevant MCF-7 cells. The P-DBS attains a detection limit of 12 cells per µL, as well as a contrast of 1.25 between the MCF-10A sample signal and the MCF-7 sample signal. A reading length of 200 µs was further achieved, along with a relative cell viability of ∼100% for both MCF-7 and MCF-10A cells and with the PNN. Atomistic simulations reveal the structural origin of the shape complementarity-facilitated decrease in the output impedance of the P-DBS. The combination of previously unreported exotic sensing materials and digital sensor design represents an approach to unlocking the ultra-sensitive detection of cancer cell types and provides a promising avenue for early cancer diagnosis, staging and monitoring.


Subject(s)
Nanostructures , Neoplasms , Humans , MCF-7 Cells , Polyethylene Glycols , Limit of Detection , Nanostructures/chemistry , Biomarkers
2.
Curr Drug Deliv ; 12(3): 333-41, 2015.
Article in English | MEDLINE | ID: mdl-25600981

ABSTRACT

Substantial amount of research has been done in recent decades for the development of nanoparticle systems to selectively deliver drugs to cancer cells for concurrently enhancing and reducing anti-cancer and off-target effects, respectively. pH-sensitive carbonate apatite (CA) was originally developed for efficient and targeted delivery of DNA, siRNA and proteins to various cancer cell lines. Recently, the CA particles were employed to deliver anti-cancer drugs, cyclophosphamide, doxorubicin and methotrexate to cancer cells. Here, we report on the fabrication and characterization of gemcitabine- loaded CA particles, followed by the evaluation of their roles in enhancement of cytotoxicity in two human and one murine breast cancer cell lines. HPLC was performed to measure binding efficiency of the drug to the apatite particles whereas particle size and zeta potential were evaluated to characterize drug/apatite complex. Depending on the initial doses of the drug, its bind binding affinity towards the particles varied from 3.85% to 4.45%. The particle size was found to surprisingly decrease with an increase of the initial drug concentration. In vitro chemosensitivity assay revealed that apatite/drug nanoparticle complexes presented significantly higher cytotoxicity to breast cancer cells compared to free drugs, which could be correlated with the enhanced cellular uptake of the small size drug-loaded particles through endocytosis compared to the passive diffusion of the free drug.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Apatites/chemistry , Breast Neoplasms/drug therapy , Deoxycytidine/analogs & derivatives , Animals , Antimetabolites, Antineoplastic/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Chromatography, High Pressure Liquid , Deoxycytidine/administration & dosage , Deoxycytidine/pharmacology , Drug Resistance, Neoplasm , Endocytosis , Female , Humans , MCF-7 Cells , Nanoparticles , Particle Size , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...