Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 11(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36009829

ABSTRACT

This study attempts to determine which of the habitats occupied by Filipendula vulgaris creates better conditions for its growth and development. Selected physiological parameters-PSII activity, chlorophyll content, electrolyte leakage, hydrogen peroxide content as well as biomass, the occurrence of mycorrhiza, and soil characteristics-were investigated. Grassland soils had a higher content of macronutrients and a lower concentration of heavy metals. The degree of colonization of F. vulgaris by AMF (Arum type) oscillated around high values in both types of stands. Plants growing on xerothermic grasslands achieved much better fluorescence parameters than those collected from meadows. Similar results were obtained from the analysis of chlorophyll content. The destabilization degree of cell membranes was significantly higher in plants collected in meadows than in grasslands. Biomass analysis showed higher values of these parameters in grassland plants. In the case of the parameters of fluorescence emission, plants growing on grasslands achieved significantly lower values than plants collected from meadows. The analyses carried out showed that better conditions for growth and physiological activity of F. vulgaris are probably associated with grasslands on a calcareous substrate.

2.
Biology (Basel) ; 11(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35336844

ABSTRACT

The distribution of arsenic continues due to natural and anthropogenic activities, with varying degrees of impact on plants, animals, and the entire ecosystem. Interactions between iron (Fe) oxides, bacteria, and arsenic are significantly linked to changes in the mobility, toxicity, and availability of arsenic species in aquatic and terrestrial habitats. As a result of these changes, toxic As species become available, posing a range of threats to the entire ecosystem. This review elaborates on arsenic toxicity, the mechanisms of its bioavailability, and selected remediation strategies. The article further describes how the detoxification and methylation mechanisms used by Shewanella species could serve as a potential tool for decreasing phytoavailable As and lessening its contamination in the environment. If taken into account, this approach will provide a globally sustainable and cost-effective strategy for As remediation and more information to the literature on the unique role of this bacterial species in As remediation as opposed to conventional perception of its role as a mobiliser of As.

3.
Environ Sci Pollut Res Int ; 29(2): 1763-1787, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34713399

ABSTRACT

Over several decades, arsenic (As) toxicity in the biosphere has affected different flora, fauna, and other environmental components. The majority of these problems are linked with As mobilization due to bacterial dissolution of As-bearing minerals and its transformation in other reservoirs such as soil, sediments, and ground water. Understanding the process, mechanism, and various bacterial species involved in these processes under the influence of some ecological variables greatly contributes to a better understanding of the fate and implications of As mobilization into the environments. This article summarizes the process, role, and various types of bacterial species involved in the transformation and mobilization of As. Furthermore, insight into how Fe(II) oxidation and resistance mechanisms such as methylation and detoxification against the toxic effect of As(III) was highlighted as a potential immobilization and remediation strategy in As-contaminated sites. Furthermore, the significance and comparative advantages of some useful analytical tools used in the evaluation, speciation, and analysis of As are discussed and how their in situ and ex situ applications support assessing As contamination in both laboratory and field settings. Nevertheless, additional research involving advanced molecular techniques is required to elaborate on the contribution of these bacterial consortia as a potential agronomic tool for reducing As availability, particularly in natural circumstances. Graphical abstract. Courtesy of conceptual model: Aminu Darma.


Subject(s)
Arsenic , Groundwater , Soil Pollutants , Arsenic/analysis , Biotransformation , Oxidation-Reduction , Soil , Soil Pollutants/analysis
4.
Plants (Basel) ; 10(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34579339

ABSTRACT

Invasive plant species are responsible for changing colonized ecosystems by occupying new areas and creating a threat to the functioning of the native flora and fauna populations. Alien plants can produce allelochemicals, substances completely new to indigenous communities. This study investigated the germination seed reactions of Festuca rubra L. and Raphanus sativus L. var. radicula Pers. cv. Rowa on the extracts from the roots, stalks, leaves, and flowers of Rosa blanda. Aqueous extracts at concentrations of 1%, 2.5%, and 5% were used in order to determine the allelopathic potential of this alien rose for Europe. With the increase in the concentration of extracts, a decrease in the germination capacity of seeds of the tested species was observed. R. blanda extracts inhibited the growth of seedlings. Depending on the concentration and type of the extract, changes in biomass and water content in Red Fescue and Red Radish seedlings were also shown. The highest differences in the electrolyte leakages were noted in seedlings treated with 5% rose extracts. The study showed that the aqueous extracts of R. blanda leaves and flowers had the greatest allelopathic potential.

5.
Molecules ; 26(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34576920

ABSTRACT

Heavy metal and metalloid-contaminated soil is a serious barrier to colonization for many plant species. The problem of the elimination of toxic waste accumulated in technogenous soils in many highly transformed regions is extremely important. Hence, another attempt was made to analyze the effect of the addition of sorbents (BCH-biochar, B-bentonite, ChM-chicken manure, OS-organo-zeolitic substrate) to contaminated copper soil on the germination and early growth of Eurasian common grass species (Agrostis capillaris, A. stolonifera, Festuca rubra and Poa pratensis), which could potentially be used in recultivation. This experiment was based on the laboratory sandwich method. Standard germination indexes, morphometry and biomass analysis were used. The percentage of germinating seeds was lower in each of the soil variants and sorbents used compared to the control. Dry mass was positively stimulated by all sorbents. The response to the addition of sorbents, expressed as the electrolyte leakage of seedlings, was different depending on the species and type of sorbent. Among all sorbents, the most positive effects on germination and growth were observed in the case of OS. Overall, the response to the addition of sorbents was different in the studied species, depending on their stage of development.


Subject(s)
Copper , Environmental Pollution , Seedlings , Seeds , Soil , Charcoal , Germination , Poa
6.
Molecules ; 26(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443651

ABSTRACT

Caraway (Carum carvi L.) essential oil is a candidate for botanical herbicides. A hypothesis was formulated that the sand-applied maltodextrin-coated caraway oil (MCEO) does not affect the growth of maize (Zea mays L.). In the pot experiment, pre-emergence application of five doses of MCEO was tested on four maize cultivars up to the three-leaf growth stage. The morphological analyses were supported by the measurements of relative chlorophyll content (SPAD), two parameters of chlorophyll a fluorescence, e.g., Fv/Fm and Fv/F0, and fluorescence emission spectra. The analyzed MCEO contained 6.5% caraway EO with carvone and limonene as the main compounds, constituting 95% of the oil. The MCEO caused 7-day delays in maize emergence from the dose of 0.9 g per pot (equal to 96 g m-2). Maize development at the three-leaf growth stage, i.e., length of roots, length of leaves, and biomass of shoots and leaves, was significantly impaired already at the lowest dose of MCEO: 0.4 g per pot, equal to 44 g m-2. A significant drop of both chlorophyll a fluorescence parameters was noted, on average, from the dose of 0.7 g per pot, equal to 69 g m-2. Among the tested cultivars, cv. Rywal and Pomerania were less susceptible to the MCEO compared to the cv. Kurant and Podole. In summary, maize is susceptible to the pre-emergence, sand-applied MCEO from the dose of 44 g m-2.


Subject(s)
Oils, Volatile/pharmacology , Plant Oils/pharmacology , Zea mays/drug effects , Zea mays/growth & development , Biomass , Carum/chemistry , Chlorophyll A/metabolism , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/pharmacology , Fluorescence , Herbicides/pharmacology , Limonene/chemistry , Limonene/pharmacology , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Zea mays/metabolism
7.
Plants (Basel) ; 10(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806926

ABSTRACT

Paramecium bursaria (Ehrenberg 1831) is a ciliate species living in a symbiotic relationship with green algae. The aim of the study was to identify green algal symbionts of P. bursaria originating from distant geographical locations and to answer the question of whether the occurrence of endosymbiont taxa was correlated with a specific ciliate syngen (sexually separated sibling group). In a comparative analysis, we investigated 43 P. bursaria symbiont strains based on molecular features. Three DNA fragments were sequenced: two from the nuclear genomes-a fragment of the ITS1-5.8S rDNA-ITS2 region and a fragment of the gene encoding large subunit ribosomal RNA (28S rDNA), as well as a fragment of the plastid genome comprising the 3'rpl36-5'infA genes. The analysis of two ribosomal sequences showed the presence of 29 haplotypes (haplotype diversity Hd = 0.98736 for ITS1-5.8S rDNA-ITS2 and Hd = 0.908 for 28S rDNA) in the former two regions, and 36 haplotypes in the 3'rpl36-5'infA gene fragment (Hd = 0.984). The following symbiotic strains were identified: Chlorella vulgaris, Chlorella variabilis, Chlorella sorokiniana and Micractinium conductrix. We rejected the hypotheses concerning (i) the correlation between P. bursaria syngen and symbiotic species, and (ii) the relationship between symbiotic species and geographic distribution.

8.
Molecules ; 26(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922689

ABSTRACT

This article is devoted to some aspects of the fragrant substances of plant origin applied in the food industry and perfumery as well. Since antiquity many extractive techniques have been developed to obtain essential oils. Some of them are still applied, but new ones, like microwave or ultrasound-assisted extractions, are more and more popular and they save time and cost. Independently of the procedure, the resulting essential oils are the source of many so-called isolates. These can be applied as food additives, medicines, or can be used as starting materials for organic synthesis. Some substances exist in very small amounts in plant material so the extraction is not economically profitable but, after their chemical structures were established and synthetic procedures were developed, in some cases they are prepared on an industrial scale. The substances described below are only a small fraction of the 2000-3000 fragrant molecules used to make our life more enjoyable, either in food or perfumes. Additionally, a few examples of allelopathic fragrant compounds, present in their natural state, will be denoted and some of their biocidal features will be mentioned as an arising "green" knowledge in agriculture.


Subject(s)
Oils, Volatile/chemistry , Perfume/chemistry , Odorants
9.
Plants (Basel) ; 9(12)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287383

ABSTRACT

In agriculture, the bio-stimulating properties of laser light increase the yielding capacity of crop species. The experiment aimed to determine the pre-sowing effect of irradiation time with laser He-Ne red light of triticale grains (×Triticosecale Wittm. ex A.Camus) on germination and selected morphological and physiological parameters of seedlings and plants grown from them. The highest values of germination indexes were found for grains irradiated with laser for 3 h. In relation to the control, the elongation growth of seedlings was stimulated in grains irradiated with light for 3 h and inhibited for 24 h. The values of the fresh and dry mass of seedlings changed depending on the exposure time. He-Ne light did not significantly affect the degree of destabilization of seedling cell membranes. Biometric analysis of plants grown from irradiated grains showed different reactions of triticale organs to the irradiation time. Red light clearly stimulated the increase in the value of organ mass. Chlorophyll content in leaves was higher in plants grown from grains irradiated for 3 h. Photosynthetic activity did not change significantly relative to the control. The fluorescence emission indexes were mostly lower than in the control, which indicated a positive effect of the laser. In general, the red light of the laser stimulated the morphology and physiology of seedlings and plants, although, for some features, long exposure to red light caused a slight reduction effect.

10.
Plants (Basel) ; 9(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198139

ABSTRACT

Solidago canadensis L. is an expansive perennial that forms persistent, species-poor plant communities. It often spreads in fallow areas, displacing native floristic ingredients. Its expansiveness is largely due to morphological features, but it can also be the effect of allelopathic interaction. The aim of the experiment was to investigate the effect of aqueous extracts (decoction, infusion, and maceration) from dry S. canadensis leaves on germination and early growth stages of Raphanus sativus L. var. radicula Pers., in three cultivars: 'Rowa', 'Póldluga', and 'Krakowianka'. In comparison to the control, the percentage of germinated radish seeds of 'Rowa' cultivar was statistically lower on the infusion and macerate. Regardless of the cultivar, the smallest changes in germination were found in seeds watered with decoction, and the largest with macerate. Seedlings length was most inhibited on macerate substrates, and least with infusion. Regardless of the form of the extract, each of them negatively affected the initial growth of radish seedlings. A fresh mass of 'Rowa' seedlings was inhibited by all Canadian goldenrod extracts. In relation to the control, the 'Krakowianka' cultivar was the least sensitive to S. canadensis extracts. The total chlorophyll content was the lowest in the seedlings of the 'Rowa' and 'Póldluga' cultivars germinated on macerate, compared to the control and two others extracts. The percentage of electrolyte leakage depended on the type of extract used and the radish cultivar. The study showed that depending on the cultivar, the aqueous extracts from S. canadensis leaves decreasing of germination and early growth of R. sativus.

11.
Plants (Basel) ; 9(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212931

ABSTRACT

The reclamation of abandoned mining heaps rich in potentially toxic elements (PTEs) is critical for the environment. We carried out a laboratory experiment studying the effects of the addition of four natural sorbents (biochar, bentonite, chicken manure and organo-zeolitic substrate) to soils contaminated with PTEs, predominantly Cu, As and Sb, on the germination and growth of the autochthonous grasses Agrostis capillaris, A. stolonifera, Festuca rubra and Poa pratensis. The experiment used Petri dish tests with water extracts of contaminated soil and soil neutralised with the four sorbents. Standard indexes of the germination process were used (germination percentage, time required for 50% germination index, speed of emergence), and different values were found depending on the plant species and sorbent used. However, the percentage of seeds germinating was lower for each sorbent compared to the control (distilled water). The fresh mass values were positively stimulated by all sorbents. Electrolyte leakage was the highest in seedlings watered with an extract of untreated soil from the heap compared to extracts from treated soils and the control. This can be interpreted as eliminating the harmful effects of increased potentially toxic element (PTE) contents by sorbents, which can be useful in remediation processes.

12.
Toxins (Basel) ; 12(4)2020 04 16.
Article in English | MEDLINE | ID: mdl-32316304

ABSTRACT

The contribution of picocyanobacteria to summer phytoplankton blooms, accompanied by an ecological crisis, is a new phenomenon in Europe. This issue requires careful investigation. We studied allelopathic activity of freshwater picocyanobacterium Synechococcus sp. on phytoplankton assemblages from three freshwater lakes. In this study, the allelopathic activity of the Synechococcus sp. on the total abundance, biomass, as well as structure of the phytoplankton assemblages were investigated. Our results indicated that addition of exudates obtained from Synechococcus sp. affected the number of cells and biomass of the phytoplankton communities; the degree of inhibition or stimulation was different for each species, causing a change in the phytoplankton abundance and dominance during the experiment. We observed that some group of organisms (especially cyanobacteria from the genus Aphanothece, Limnothrix, Microcystis, and Synechococcus) showed tolerance for allelopathic compounds produced and released by Synechococcus sp. It is also worth noting that in some samples, Bacillariophyceae (e.g., Amphora pediculus, Navicula pygmaea, and Nitzschia paleacea) were completely eliminated in the experimental treatments, while present in the controls. This work demonstrated that the allelopathic activity exhibited by the Synechococcus sp. is probably one of the major competitive strategies affecting some of the coexisting phytoplankton species in freshwater ecosystems. To our best knowledge this is the first report of the allelopathic activity of Synechococcus sp. in the freshwater reservoirs, and one of the few published works showing allelopathic properties of freshwater picocyanobacteria on coexisting phytoplankton species.


Subject(s)
Allelopathy , Lakes/microbiology , Phytoplankton/isolation & purification , Synechococcus/isolation & purification , Biomass , Phytoplankton/physiology , Poland , Synechococcus/physiology
13.
J Hazard Mater ; 388: 121803, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31836363

ABSTRACT

Heavy metal uptake is confined by other elements, namely iron (Fe) and sulfur (S). There are yet no reports on the contribution of S supply to the attenuation of chromium (Cr) uptake when different species of Cr are employed. The bioaccumulation of Cr in two cultivars of rice seedlings subjected to 1.0 mg L-1 Cr (III and VI) stress under S deprived or non-deprived conditions were examined in a hydroponic experiment. Sulfur nutrition promoted the root and shoot growth of rice cultivars under Cr stress. For both + S/ - S seedlings, the concentration of both Cr species followed the sequence ACA (ascorbic citrate acetic) extract > root > shoot, with less Cr accumulated in shoots of + S seedlings to that of - S seedlings. The concentrations of Cr and Fe in ACA extracts were found to be significantly correlated. Compared to + S treatment, Cr and Fe contents in iron plaque without S treatment were markedly reduced, especially for Cr (VI). Cr content in roots and shoots was indicated to be at par between cultivars; however, it significantly differed for S and Cr treatments. The Cr translocation between different parts of plaque-harboring seedlings was more pronounced in Cr (VI) treatment relative to Cr (III) treatment. Increased immobilization of Cr in iron plaque of + S seedlings and its subsequent reduction in aerial tissues may likely shed some light on the barrier function of iron plaques in the uptake of both Cr species by rice seedlings.


Subject(s)
Chromium/analysis , Iron/metabolism , Oryza/growth & development , Plant Roots/growth & development , Seedlings/growth & development , Soil Pollutants/analysis , Sulfur/metabolism , Biological Transport , Hydroponics , Iron/chemistry , Models, Theoretical , Oryza/chemistry , Oryza/metabolism , Plant Roots/chemistry , Rhizosphere , Seedlings/chemistry , Seedlings/metabolism , Solutions , Sulfur/chemistry
14.
Toxins (Basel) ; 11(12)2019 12 06.
Article in English | MEDLINE | ID: mdl-31817796

ABSTRACT

Only a few studies have documented the physiological effects of allelopathy from cyanobacteria against coexisting microalgae. We investigated the allelopathic ability of the bloom-forming cyanobacteria Synechococcus sp. and Nodularia spumigena filtrates on several aspects related to the physiology of the target species: population growth, cell morphology, and several indexes of photosynthesis rate and respiration. The target species were the following: two species of green algae (Oocystis submarina, Chlorella vulgaris) and two species of diatoms (Bacillaria paxillifer, Skeletonema marinoi). These four species coexist in the natural environment with the employed strains of Synechococcus sp. and N. spumigena employed. The tests were performed with single and repeated addition of cyanobacterial cell-free filtrate. We also tested the importance of the growth phase in the strength of the allelopathic effect. The negative effects of both cyanobacteria were the strongest with repeated exudates addition, and generally, Synechococcus sp. and N. spumigena were allelopathic only in the exponential growth phase. O. submarina was not negatively affected by Synechococcus filtrates in any of the parameters studied, while C. vulgaris, B. paxillifer, and S. marinoi were affected in several ways. N. spumigena was characterized by a stronger allelopathic activity than Synechococcus sp., showing a negative effect on all target species. The highest decline in growth, as well as the most apparent cell physical damage, was observed for the diatom S. marinoi. Our findings suggest that cyanobacterial allelochemicals are associated with the cell physical damage, as well as a reduced performance in respiration and photosynthesis system in the studied microalgae which cause the inhibition of the population growth. Moreover, our study has shown that some biotic factors that increase the intensity of allelopathic effects may also alter the ratio between bloom-forming cyanobacteria and some phytoplankton species that occur in the same aquatic ecosystem.


Subject(s)
Chlorophyta , Diatoms , Microalgae , Nodularia/metabolism , Pheromones/metabolism , Synechococcus/metabolism , Allelopathy , Chlorophyta/growth & development , Chlorophyta/metabolism , Diatoms/growth & development , Diatoms/metabolism , Eutrophication , Microalgae/growth & development , Microalgae/metabolism , Photosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...