Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36078583

ABSTRACT

The aim of the study was to optimize culture conditions and medium composition to accelerate the biodegradation of chicken feather waste by keratinolytic soil strains of Trichophyton ajelloi, which are poorly known in this respect, as well as to propose hitherto unconsidered culture conditions for these fungi in order to obtain a biopreparation with a high fertilization value. Different pH of the medium, incubation temperatures, amounts of chicken feathers, additional carbon sources, and culture methods were tested. The process of optimizing keratin biodegradation was evaluated in terms of measuring the activity of keratinase, protease, disulfide reductase, concentration of released soluble proteins and peptides, total pool of amino acids, ammonium and sulfate ions, changes in medium pH, and feather weight loss. It was found that the studied fungal strains were capable of decomposing and mineralizing keratin from feather waste. Regarding the fertilizer value of the obtained hydrolysates, it was shown that the release of sulfate and ammonium ions was highest in a stationary culture containing 2% feathers with an initial pH of 4.5 and a temperature of 28 °C. Days 14-21 of the culture were indicated as the optimal culture time for these fungi to obtain biopreparations of high fertilizing value.


Subject(s)
Ammonium Compounds , Feathers , Ammonium Compounds/analysis , Animals , Arthrodermataceae , Biodegradation, Environmental , Chickens/metabolism , Feathers/chemistry , Hydrogen-Ion Concentration , Keratins/analysis , Keratins/metabolism , Sulfates/analysis , Temperature , Trichophyton/metabolism
2.
Pathogens ; 11(3)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35335665

ABSTRACT

The present study is the first report of a detailed analysis of the frequency of Fusarium and genera related to Fusarium colonizing the root zone of clovers and grasses growing in a permanent meadow established on peat-muck soil in a post-bog habitat. The isolation of fungi was carried out on the Nash and Snyder medium with the plate dilution method. The taxonomic identification of the collection of pure fungal cultures was based on morphological features revealed by macroscopic and microscopic observations. The species dominance coefficients, Marczewski-Steinhaus and Simpson species diversity index were calculated. Eight Fusarium complexes were distinguished. The distribution of the Fusarium population was uneven, which was generally reflected in a higher frequency of the F. oxysporum species complex in the clover root zone and M. nivale, F. avenaceum from the Fusarium tricinctum species complex, and F. culmorum from the F. sambucinum species complex in the grass root zone. The highest similarity of fungi was determined in the rhizoplane and the endorhizosphere. The highest species diversity and the highest population size were determined in the rhizosphere soil. The fertilization treatment reduced the growth rates in the Fusarium sensu lato and in genera related to Fusarium, as evidenced by the decrease in the total abundance and species richness. The root colonization by the Fusarium, especially the F. oxysporum species complex, was not accompanied by plant pathologies, which suggests a saprotrophic and endophytic rather than parasitic character of the relationships with the plant host.

3.
Article in English | MEDLINE | ID: mdl-33302453

ABSTRACT

Keratinolytic fungi representing the genus Arthroderma that were isolated from the soils of a rook (Corvus frugilegus) colony were used as biological agents for the disposal of waste feathers. The aim of this study was to assess the abilities of Arthroderma tuberculatum and Arthroderma multifidum fungi with a varied inflow of keratin matter to biodegrade waste feathers. The evaluation was based on the determination of feather mass loss, the activity of keratinolytic enzymes, and the content of mineral N and S forms. It was found that the activity of protease released by the fungi contributed to an increase in the level of soluble proteins and peptides and the concentration of ammonium ions, as well as alkalization of the culture medium. Keratinase activity was significantly correlated with sulfate release, especially in A. tuberculatum cultures. The strains of A. tuberculatum fungi isolated from the soil with the highest supply of organic matter, i.e., strains III, IV, and V, had the lowest enzymatic activity, compared to the A. multifidum strains, but they released mineral nitrogen and sulfur forms that are highly important for fertilization, as well as nutritionally important peptides and amino acids. A. tuberculatum strains can be used for the management of waste feathers that can be applied in agricultural practice.


Subject(s)
Arthrodermataceae/enzymology , Crows , Nitrogen/metabolism , Peptide Hydrolases/metabolism , Soil Microbiology , Sulfur/metabolism , Animals , Arthrodermataceae/isolation & purification , Feathers , Minerals , Waste Management
SELECTION OF CITATIONS
SEARCH DETAIL
...