Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(39): 16068-16076, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37721713

ABSTRACT

The structure of a Na4Sn2Ge5O16 phase was established via single-crystal X-ray diffraction. Unusually large displacement parameters of Na atoms suggested the possibility of Na+ ionic conductivity. To create Na deficiencies and thus increase the Na+ mobility in Na4Sn2Ge5O16, Sn4+ cations were partially substituted with Sb5+. A series of Na4-xSn2-xSbxGe5O16 samples (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, or 0.35) were prepared by solid-state reactions and characterized with electrical impedance spectroscopy in the range of 25-200 °C. The highest ionic conductivity value was achieved in the Na3.8Sn1.8Sb0.2Ge5O16 sample (1.6 mS cm-1 at 200 °C). Na+ migration pathways were calculated using the bond-valence energy landscape approach, and two-dimensional conductivity channels with low energy barriers (≈0.4 eV) were found in the structure. Three-dimensional conductivity can also be achieved in the structure; however, it has a much higher energy barrier. The pristine phase and Na3.8Sn1.8Sb0.2Ge5O16 sample were studied via 23Na and 119Sn solid-state nuclear magnetic resonance. A faster exchange between the Na sites was observed in the doped sample.

2.
Dalton Trans ; 52(31): 10689-10699, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37482937

ABSTRACT

Recently, thermoelectric (TE) materials have been attracting great attention due to their improved capability to convert heat directly into electricity. PbTe-based TE materials are among the most competitive ones; however, lead toxicity limits their potential applications. Thus, the current focus in the field is on the discovery of lead-free analogues. GeTe is considered to be a promising candidate, however, its thermoelectric performance is limited by a non-ideal band structure and intrinsic Ge vacancies. In this work, GeTe was co-doped with Bi, Zn, and In. Initial doping with Bi enhances the performance by tuning the electronic properties and bringing down the thermal conductivity. Subsequent Zn doping permits to maintain the high power factor by increasing carrier mobility and reducing carrier concentration. Additionally, Zn incorporation lowers thermal conductivity and, thus, increases the performance. Subsequent In doping in (Ge0.97Zn0.02In0.01Te)0.97(Bi2Te3)0.03 reduces thermal conductivity even further and makes this material the best performing one. Scanning transmission electron microscopy shows the presence of nano twinning, defect layers, and dislocation bands that contribute to the suppression of the lattice thermal conductivity. A peak zT value of 2.06 and an average zT value of 1.30 have been achieved in (Ge0.97Zn0.02In0.01Te)0.97(Bi2Te3)0.03. These results are among the best state-of-the-art thermoelectric materials.

3.
Inorg Chem ; 61(24): 9364-9374, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35675534

ABSTRACT

Single crystals of three new compounds, Na0.36Sr0.82Ge4O9 (1, proposed composition), Na2SrGe6O14 (2), and K2SrGe8O18 (3), were obtained and characterized using single-crystal X-ray diffraction. Their structures contain three-dimensional (3D) anionic frameworks built from GeO4 and GeO6 polyhedra. The presence of octahedral Ge4+ sites makes the new phases suitable for Mn4+ substitution to obtain red-emitting phosphors with a potential application for light conversion. Photoluminescence properties of Mn4+-substituted Na2SrGe6O14 (2) and K2SrGe8O18 (3) samples were studied over a range of temperatures, and red light photoluminescence associated with the electronic transitions of tetravalent manganese was observed. The Na2SrGe6O14 (2) phase was also substituted with Pr3+ on the mixed Na-Sr site similar to the previously studied Na2CaGe6O14:Pr3+. The red emission peak of the Pr3+ activator occurs at a shorter wavelength (610 nm) compared to that of Mn4+ (662-663 nm). Additionally, second harmonic generation (SHG) data were collected for the noncentrosymmetric Na2SrGe6O14 (2) phase, indicating weak SHG activity. Diffuse reflectance spectroscopy and density of states calculations were performed to estimate the band gap values for pristine Na2SrGe6O14 (2) and K2SrGe8O18 (3) phases.

4.
Dalton Trans ; 49(18): 6135-6144, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32328598

ABSTRACT

The current work provides a comparative study of the thermoelectric properties of the Sn0.5Ge0.5Te phases doped with Sb and Bi and alloyed with Cu2Te. The Sn0.5Ge0.5Te composition was chosen based on the fact that it delivers the highest ZT value within the Sn1-xGexTe series (x≤ 0.5). Doping Sn0.5Ge0.5Te with electron-richer Sb and Bi improves both the charge transport properties and thermal conductivities. Alloying with Cu2Te optimizes the thermoelectric performance of the samples even further, yielding a ZT value of 0.99 for (Sn0.5Ge0.5)0.91Bi0.06Te(Cu2Te)0.05 at 500 °C. Hall measurements were performed to understand the effects of doping and alloying.

5.
Dalton Trans ; 49(1): 17-22, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31799569

ABSTRACT

The Sr0.95Sm0.0125Dy0.0125□0.025Ti0.90Nb0.10O3±Î´/ZrO2 composite was directly prepared through spark plasma sintering. This approach limited the grain growth and facilitated the achievement of a narrow grain size distribution due to fast sintering and ZrO2 effects. Thermal conductivity declined to 1.68 W m-1 K-1, which is the lowest among the reported values for micro-polycrystalline SrTiO3-based structures.

6.
Dalton Trans ; 47(33): 11512-11520, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30074043

ABSTRACT

The Zn-Sb system contains two well-known thermoelectric materials, Zn1-δSb and Zn13-δSb10 ("Zn4Sb3"), and two other phases, Zn9-δSb7 and Zn3-δSb2, stable only at high temperatures. The current work presents the updated phases diagram constructed using the high-temperature diffraction studies and elemental analysis. All phases are slightly Zn deficient with respect to their stoichiometric compositions, which is consistent with their p-type charge transport properties. Either at room or elevated temperatures, Zn1-δSb and Zn13-δSb10 display deficiencies of the main Zn sites and partial Zn occupancy of the other interstitial sites. A phase pure Zn13-δSb10 sample can be obtained from the Zn13Sb10 loading composition, and there is no need to use a Zn-richer composition such as Zn4Sb3. While the Zn13-δSb10 phase is stable till its decomposition temperature of 515 °C, it may incorporate some additional Zn around 412 °C, if elemental Zn is present.

7.
Inorg Chem ; 56(5): 2827-2833, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28195712

ABSTRACT

A conventional solid-state approach has been developed for the synthesis of phase-pure magnetocaloric Mn2-xFexSi0.5P0.5 materials (x = 0.6, 0.7, 0.8, 0.9). Annealing at high temperatures followed by dwelling at lower temperatures is essential to obtain pure samples with x = 0.7, 0.8, and 0.9. Structural features of the samples with x = 0.6 and 0.9 were analyzed as a function of temperature via synchrotron powder diffraction. The Curie temperature, temperature hysteresis, and magnetic entropy change were established from the magnetic measurements. According to the diffraction and magnetization data, all samples undergo a first-order magnetostructural transition, but the first-order nature becomes less pronounced for samples that are more Mn rich.

8.
Inorg Chem ; 55(19): 9677-9684, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27622951

ABSTRACT

AlFe2B2 and AlFe2-xCoxB2 (x = 0-0.30) were synthesized from the elements in three different ways. The samples were characterized by powder X-ray diffraction, Rietveld refinements, energy-dispersive X-ray spectroscopy, and magnetic measurements. Using Al flux the formation of AlFe2B2 single crystals is preferred. Arc melting enables the substitution of ∼6% Co. This substitution of Fe by Co decreases the Curie temperature TC from 290 to 240 K. The highest Co substitution up to 15% is achieved by spark plasma sintering (SPS). TC is reduced to 205 K. In all cases an excess of Al is necessary to avoid the formation of ferromagnetic FeB. Al13Fe4-xCox is the common byproduct. TC and the cobalt content are linearly correlated. The transition paramagnetic-ferromagnetic remains sharp for all examples. The magnetic entropy change of the Co-containing samples is comparable to AlFe2B2. SPS synthesis yields, in short reaction times, a homogeneous and dense material with small amounts of paramagnetic Al13Fe4-xCox as an impurity, which can serve as sinter additive. These properties make AlFe2-xCoxB2 a promising magnetocaloric material for applications between room temperature and 200 K.

9.
Dalton Trans ; 44(48): 20983-90, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26585771

ABSTRACT

The Zn9-δSb7 phase has been identified via high-temperature powder diffraction studies. Zn9-δSb7 adopts two modifications: an α form stable between 514 °C and 539 °C and a Zn-poorer ß form stable from 539 °C till its melting temperature of 581 °C. The Zn9-δSb7 structure was solved from the powder data using the simulated annealing approach. Both modifications adopt the same hexagonal structure (P6/mmm) but with slightly different lattice parameters. The α-to-ß transformation is abrupt and first-order in nature. The Zn atoms occupy the tetrahedral holes created by Sb atoms. The ideal Zn9Sb7 composition can be explained by its tendency to adopt a charge balance configuration. Out of 7 Sb atoms, 3 Sb atoms form dimers (Sb(2-) ions) and 4 Sb atoms are isolated (Sb(3-) ions), which require 9 Zn(2+) cations for charge neutrality.

10.
J Biol Inorg Chem ; 20(4): 619-38, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25712889

ABSTRACT

Reaction of salicylaldehyde-2-picolinylhydrazone (HL) Schiff base ligand with precursor compounds [{(p-cymene)RuCl2}2] 1, [{(C6H6)RuCl2}2] 2, [{Cp*RhCl2}2] 3 and [{Cp*IrCl2}2] 4 yielded the corresponding neutral mononuclear compounds 5-8, respectively. The in vitro antitumor evaluation of the compounds 1-8 against Dalton's ascites lymphoma (DL) cells by fluorescence-based apoptosis study and by their half-maximal inhibitory concentration (IC50) values revealed the high antitumor activity of compounds 3, 4, 5 and 6. Compounds 1-8 render comparatively lower apoptotic effect than that of cisplatin on model non-tumor cells, i.e., peripheral blood mononuclear cells (PBMC). The antibacterial evaluation of compounds 5-8 by agar well-diffusion method revealed that compound 6 is significantly effective against all the eight bacterial species considered with zone of inhibition up to 35 mm. Fluorescence imaging study of compounds 5-8 with plasmid circular DNA (pcDNA) and HeLa RNA demonstrated their fluorescence imaging property upon binding with nucleic acids. The docking study with some key enzymes associated with the propagation of cancer such as ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II revealed strong interactions between proteins and compounds 5-8. Conformational analysis by density functional theory (DFT) study has corroborated our experimental observation of the N, N binding mode of ligand. Compounds 5-8 exhibited a HOMO (highest occupied molecular orbital)-LUMO (lowest unoccupied molecular orbital) energy gap 2.99-3.04 eV. Half-sandwich ruthenium, rhodium and iridium compounds were obtained by treatment of metal precursors with salicylaldehyde-2-picolinylhydrazone (HL) by in situ metal-mediated deprotonation of the ligand. Compounds under investigation have shown potential antitumor, antibacterial and fluorescence imaging properties. Arene ruthenium compounds exhibited higher activity compared to that of Cp*Rh/Cp*Ir in inhibiting the cancer cells growth and pathogenic bacteria. At a concentration 100 µg/mL, the apoptosis activity of arene ruthenium compounds, 5 and 6 (~30 %) is double to that of Cp*Rh/Cp*Ir compounds, 7 and 8 (~12 %). Among the four new compounds 5-8, the benzene ruthenium compound, i.e., compound 6 is significantly effective against the pathogenic bacteria under investigation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Fluorescent Dyes/pharmacology , Hydrazones/chemistry , Iridium/chemistry , Organometallic Compounds/pharmacology , Rhodium/chemistry , Ruthenium/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Candida albicans/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Escherichia coli/drug effects , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Quantum Theory , Schiff Bases/chemistry , Staphylococcus aureus/drug effects , Structure-Activity Relationship
11.
Inorg Chem ; 54(3): 815-20, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25255124

ABSTRACT

Syntheses of europium metal, selenium powder, and the Sb(2)Se(3)/Bi(2)Se(3) binaries were observed to produce crystal clusters of the EuSbSe(3) and EuBiSe(3) phases. These phases crystallize with the P2(1)2(1)2(1) space group and can be easily identified based on their growth habits, forming large clusters of needles. Previous literature suggested that their structure is charge-balanced with all europium atoms in the divalent state and one-quarter of the selenium atoms forming trimers. Physical property measurements on a pure sample of EuSbSe(3) revealed typical Arrhenius-type electrical resistivity, being approximately 3 orders of magnitude too large for thermoelectric applications. Electronic structure calculations indicated that both EuSbSe(3) and EuBiSe(3) are narrow-band-gap semiconductors, in good agreement with the electrical resistivity data. The valence and conduction band states near the Fermi level are dominated by the Sb/Bi and Se p states, as expected given their small difference in electronegativity.

12.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 6): i36, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23794967

ABSTRACT

Single crystals of deca-lanthanum(III) dodeca-oxotellurate(IV), La10Te12O39, were obtained by reacting La2O3 and TeO2 in a CsCl flux. Its crystal structure can be viewed as a three-dimensional network of corner- and edge-sharing LaO8 polyhedra with Te(IV) atoms filling the inter-stitial sites. The Te(IV) atoms with their 5s (2) electron lone pairs distort the LaO8 polyhedra through variable Te-O bonds. Among the six unique Te sites, four of them define empty channels extending parallel to the a axis. The formation of these channels is a result of the stereochemically active electron lone pairs on the Te(IV) atoms. The atomic arrangement of the Te-O units can be understood on the basis of the valence shell electron pair repulsion (VSEPR) model. A certain degree of disorder is observed in the crystal structure. As a result, one of the five different La sites is split into two positions with an occupancy ratio of 0.875 (2):0.125 (2). Also, one of the oxygen sites is split into two positions in a 0.559 (13):0.441 (13) ratio, and one O site is half-occupied. Such disorder was observed in all measured La10Te12O39 crystals.

13.
Inorg Chem ; 52(2): 1025-31, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23301504

ABSTRACT

In our efforts to tune the charge transport properties of the recently discovered RE(3)SbO(3) phases (RE is a rare earth), we have prepared mixed (RE(I)RE(II))(3)SbO(3) phases (RE(I) = La, Ce; RE(II) = Dy, Ho) via high-temperature reactions at 1550 °C or greater. In contrast to monoclinic RE(3)SbO(3), the new phases adopt the P4(2)/mnm symmetry but have a structural framework similar to that of RE(3)SbO(3). The formation of the tetragonal (RE(I)RE(II))(3)SbO(3) phases is driven by the ordering of the large and small RE atoms on different atomic sites. The La(1.5)Dy(1.5)SbO(3), La(1.5)Ho(1.5)SbO(3), and Ce(1.5)Ho(1.5)SbO(3) samples were subjected to elemental microprobe analysis to verify their compositions and to electrical resistivity measurements to evaluate their thermoelectric potential. The electrical resistivity data indicate the presence of a band gap, which is supported by electronic structure calculations.

14.
Phys Rev Lett ; 110(7): 077204, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25166401

ABSTRACT

The correlation between magnetic and structural transitions in Gd(5)Si(x)Ge(4-x) hampers the studies of valence electron concentration (VEC) effects on magnetism. Such studies require decoupling of the VEC-driven changes in the magnetic behavior and crystal structure. The designed compounds, Gd(5)GaSb(3) and Gd(5)GaBi(3), adopt the same Sm(5)Ge(4)-type structure as Gd(5)Ge(4) while the VEC increases from 31 e(-)/formula in Gd(5)Ge(4) to 33 e(-)/formula in Gd(5)GaPn(3) (Pn: pnictide atoms). As a result, the antiferromagnetic ground state in Gd(5)Ge(4) is tuned into the ferromagnetic one in Gd(5)GaPn(3). First-principles calculations reveal that the nature of interslab magnetic interactions is changed by introducing extra p electrons into the conduction band, forming a ferromagnetic bridge between the adjacent (∝)(2)[Gd(5)T(4)] slabs.

15.
Inorg Chem ; 51(19): 10169-75, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22978672

ABSTRACT

Gd(4)Ge(3-x)Pn(x) (Pn = P, Sb, Bi; x = 0.5-3) phases have been prepared and characterized using X-ray diffraction, wavelength-dispersive spectroscopy, and magnetization measurements. All Gd(4)Ge(3-x)Pn(x) phases adopt a cubic anti-Th(3)P(4) structure, and no deficiency on the Gd or p-element site could be detected. Only one P-containing phase with the Gd(4)Ge(2.51(5))P(0.49(5)) composition could be obtained, as larger substitution levels did not yield the phase. Existence of Gd(4)Ge(2.51(5))P(0.49(5)) and Gd(4)Ge(2.49(3))Bi(0.51(3)) suggests that the hypothetical Gd(4)Ge(3) binary can be easily stabilized by a small increase in the valence electron count and that the size of the p element is not a key factor. Electronic structure calculations reveal that large substitution levels with more electron-rich Sb and Bi are possible for charge-balanced (Gd(3+))(4)(Ge(4-))(3) as extra electrons occupy the bonding Gd-Gd and Gd-Ge states. This analysis also supports the stability of Gd(4)Sb(3) and Gd(4)Bi(3). All Gd(4)Ge(3-x)Pn(x) phases order ferromagnetically with relatively high Curie temperatures of 234-356 K. The variation in the Curie temperatures of the Gd(4)Ge(3-x)Sb(x) and Gd(4)Ge(3-x)Bi(x) series can be explained through the changes in the numbers of conduction electrons associated with Ge/Sb(Bi) substitution.

16.
Inorg Chem ; 51(5): 3172-8, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22335623

ABSTRACT

A novel electron-poor Eu(6.5)Gd(0.5)Ge6 compound adopts the Ca7Sn6-type structure (space group Pnma, Z = 4, a = 7.5943(5) Å, b = 22.905(1) Å, c = 8.3610(4) Å, and V = 1454.4(1) ų). The compound can be seen as an intergrowth of the Gd5Si4-type (Pnma) R5Ge4 (R = rare earth) and FeB-type (Pnma) RGe compounds. The phase analysis suggests that the Eu(7-x)Gd(x)Ge6 series displays a narrow homogneity range of stabilizing the Ca7Sn6 structure at x ≈ 0.5. The structural results illustrate the structural rigidity of the ²(∝)[R5X4] slabs (X = p-element) and a possibility for discovering new intermetallics by combining the ²(∝)[R5X4] slabs with other symmetry-approximate building blocks. Electronic structure analysis suggests that the stability and composition of Eu(6.5)Gd(0.5)Ge6 represents a compromise between the valence electron concentration, bonding, and existence of the neighboring EuGe and (Eu,Gd)5Ge4 phases.

17.
J Am Chem Soc ; 134(3): 1426-9, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22235898

ABSTRACT

Compromise between the electrical conductivity and Seebeck coefficient limits the efficiency of chemical doping in the thermoelectric research. An alternative strategy, involving the control of a local crystal structure, is demonstrated to improve the thermoelectric performance in the RE(2)SbO(2) system. The RE(2)SbO(2) phases, adopting a disordered anti-ThCr(2)Si(2)-type structure (I4/mmm), were prepared for RE = La, Nd, Sm, Gd, Ho, and Er. By traversing the rare earth series, the lattice parameters of the RE(2)SbO(2) phases are gradually reduced, thus increasing chemical pressure on the Sb environment. As the Sb displacements are perturbed, different charge carrier activation mechanisms dominate the transport properties of these compounds. As a result, the electrical conductivity and Seebeck coefficient are improved simultaneously, while the number of charge carriers in the series remains constant.

18.
Dalton Trans ; 40(16): 4275-83, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21387065

ABSTRACT

Ternary Gd(5-x)Zr(x)Si(4) silicides were synthesized by arc melting of the constituent elements and subsequent heat treatments. The Gd(5-x)Zr(x)Si(4) phases adopt the orthorhombic Gd(5)Si(4)-type (space group Pnma) structure for x≤ 0.25 and the tetragonal Zr(5)Si(4)-type (space group P4(1)2(1)2) structure for x≥ 1.0, respectively. The samples with intermediate compositions contain two phases. Single-crystal X-ray diffraction reveals a preferential site occupancy for Zr on the three metal sites in the order of M3 > M2 > M1. Size arguments based on the local coordination environments suggest that the larger Gd atoms preferentially occupy the larger M1 site, while the smaller Zr atoms tend to occupy the smaller metal sites, M2 and M3. Tight-binding linear-muffin-tin orbital calculations illustrate a role of the metal-silicon bonds in the metal site occupation. An increase in the valence electron concentration through the Zr substitution weakens the Si-Si interactions but enhances the metal-silicon and metal-metal interactions. The Curie temperature of Gd(5-x)Zr(x)Si(4) decreases gradually with the increasing Zr content.

19.
Dalton Trans ; 40(5): 1020-3, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21161090

ABSTRACT

The dimeric η(6)-hexamethylbenzene ruthenium(II) triazole compounds of formulation [{(η(6)-C(6)Me(6))Ru(N(3)C(2)(CO(2)R)(2))}(2)(µC(2)O(4))] have been synthesized by 1,3-diploar cycloadditions of coordinated azido compound [{(η(6)-C(6)Me(6))Ru(L(1))N(3)}] (1) with substituted acetylene, RO(2)CC(2)CO(2)R via unexpected oxidation of the coordinated ligand to oxalate (where; L(1) = 5-hydroxy-2-(hydroxymethyl)-4-pyrone; R = Me, 3 or Et, 4). In contrast, a similar 1,3-dipolar cycloaddition reaction of [{(η(6)-C(6)Me(6))Ru(L(2))N(3)}] (2) (where; L(2) = tropolone) with acetylene yielded the monomeric triazole compound [(η(6)-C(6)Me(6))Ru(L(2)){N(3)C(2)(CO(2)R)(2)}] (where; R = Me, 5; Et, 6). The compounds were characterized by spectroscopy and the structures of representative compounds 4 and 6 have been determined by single crystal X-ray diffraction. The two ruthenium centres in the compound 4, are linked by a tetra-dentate oxalate group. Both compounds, 4 and 6, crystallized in a triclinic space group P-1.


Subject(s)
Ruthenium Compounds/chemistry , Triazoles/chemistry , Crystallography, X-Ray , Cyclization , Models, Molecular
20.
J Am Chem Soc ; 132(25): 8795-803, 2010 Jun 30.
Article in English | MEDLINE | ID: mdl-20524656

ABSTRACT

In the search for high-temperature thermoelectric materials, two families of novel, narrow-band-gap semiconducting antimonide oxides with the compositions RE(3)SbO(3) and RE(8)Sb(3-delta)O(8) (RE = La, Sm, Gd, Ho) have been discovered. Their synthesis was motivated by attempts to open a band gap in the semimetallic RESb binaries through a chemical fusion of RESb and corresponding insulating RE(2)O(3). Temperatures of 1350 degrees C or higher are required to obtain these phases. Both RE(3)SbO(3) and RE(8)Sb(3-delta)O(8) adopt new monoclinic structures with the C2/m space group and feature similar REO frameworks composed of "RE(4)O" tetrahedral units. In both structures, the Sb atoms occupy the empty channels within the REO sublattice. High-purity bulk Sm and Ho samples were prepared and subjected to electrical resistivity measurements. Both the RE(3)SbO(3) and RE(8)Sb(3-delta)O(8) (RE = Sm, Ho) phases exhibit a semiconductor-type electrical behavior. While a small band gap in RE(3)SbO(3) results from the separation of the valence and conduction bands, a band gap in RE(8)Sb(3-delta)O(8) appears to result from the Anderson localization of electrons. The relationship among the composition, crystal structures, and electrical resistivity is analyzed using electronic structure calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...