Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069338

ABSTRACT

A decrease in the regenerative potential of the liver during the development of non-alcoholic fatty liver disease (NAFLD), which is observed in the vast majority of patients with diabetes mellitus type 1, significantly increases the risk of postoperative liver failure. In this regard, it is necessary to develop new approaches for the rapid intraoperative assessment of the condition of liver tissue in the presence of concomitant liver pathology. A modern label-free approach based on multiphoton microscopy, second harmonic generation (SHG), and fluorescence lifetime imaging microscopy (FLIM) allow for the evaluation of the structure of liver tissue as well as the assessment of the metabolic state of hepatocytes, even at the cellular level. We obtained optical criteria and identified specific changes in the metabolic state of hepatocytes for a reduced liver regenerative potential in the presence of induced diabetes mellitus type 1. The obtained criteria will expand the possibilities for the express assessment of the structural and functional state of liver tissue in clinical practice.


Subject(s)
Diabetes Mellitus , Microscopy, Fluorescence, Multiphoton , Humans , Microscopy, Fluorescence, Multiphoton/methods , Liver/metabolism , Hepatocytes/metabolism , Energy Metabolism , Diabetes Mellitus/metabolism
2.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298064

ABSTRACT

Liver regeneration has been studied for many decades, and the mechanisms underlying regeneration of normal liver following resection are well described. However, no less relevant is the study of mechanisms that disrupt the process of liver regeneration. First of all, a violation of liver regeneration can occur in the presence of concomitant hepatic pathology, which is a key factor reducing the liver's regenerative potential. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or to directly stimulate liver regeneration. This review describes the known mechanisms of normal liver regeneration and factors that reduce its regenerative potential, primarily at the level of hepatocyte metabolism, in the presence of concomitant hepatic pathology. We also briefly discuss promising strategies for stimulating liver regeneration and those concerning methods for assessing the regenerative potential of the liver, especially intraoperatively.


Subject(s)
Liver Regeneration , Liver , Liver/metabolism , Hepatocytes/metabolism , Hepatectomy
3.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298155

ABSTRACT

Abuse with hepatotoxic agents is a major cause of acute liver failure. The search for new criteria indicating the acute or chronic pathological processes is still a challenging issue that requires the selection of effective tools and research models. Multiphoton microscopy with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM) are modern label-free methods of optical biomedical imaging for assessing the metabolic state of hepatocytes, therefore reflecting the functional state of the liver tissue. The aim of this work was to identify characteristic changes in the metabolic state of hepatocytes in precision-cut liver slices (PCLSs) under toxic damage by some of the most common toxins: ethanol, carbon tetrachloride (CCl4) and acetaminophen (APAP), commonly known as paracetamol. We have determined characteristic optical criteria for toxic liver damage, and these turn out to be specific for each toxic agent, reflecting the underlying pathological mechanisms of toxicity. The results obtained are consistent with standard methods of molecular and morphological analysis. Thus, our approach, based on optical biomedical imaging, is effective for intravital monitoring of the state of liver tissue in the case of toxic damage or even in cases of acute liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Failure, Acute , Humans , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/diagnostic imaging , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Liver/metabolism , Liver Failure, Acute/diagnostic imaging , Liver Failure, Acute/metabolism , Ethanol/toxicity , Carbon Tetrachloride/toxicity
4.
Pharmaceuticals (Basel) ; 16(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37375743

ABSTRACT

Personalized strategies in glioblastoma treatment are highly necessary. One of the possible approaches is drug screening using patient-derived tumor cells. However, this requires reliable methods for assessment of the response of tumor cells to treatment. Fluorescence lifetime imaging microscopy (FLIM) is a promising instrument to detect early cellular response to chemotherapy using the autofluorescence of metabolic cofactors. Here, we explored FLIM of NAD(P)H to evaluate the sensitivity of patient-derived glioma cells to temozolomide (TMZ) in vitro. Our results demonstrate that the more-responsive cell cultures displayed the longest mean fluorescence lifetime τm after TMZ treatment due to an increase in the protein-bound NAD(P)H fraction α2 associated with a shift to oxidative phosphorylation. The cell cultures that responded poorly to TMZ had generally shorter τm, i.e., were more glycolytic, and showed no or insignificant changes after treatment. The FLIM data correlate well with standard measurements of cellular drug response-cell viability and proliferation index and clinical response in patients. Therefore, FLIM of NAD(P)H provides a highly sensitive, label-free assay of treatment response directly on patient-derived glioblastoma cells and can become an innovative platform for individual drug screening for patients.

5.
Stem Cell Res Ther ; 14(1): 81, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37046354

ABSTRACT

BACKGROUND: There is an urgent clinical need for targeted strategies aimed at the treatment of bone defects resulting from fractures, infections or tumors. 3D scaffolds represent an alternative to allogeneic MSC transplantation, due to their mimicry of the cell niche and the preservation of tissue structure. The actual structure of the scaffold itself can affect both effective cell adhesion and its osteoinductive properties. Currently, the effects of the structural heterogeneity of scaffolds on the behavior of cells and tissues at the site of damage have not been extensively studied. METHODS: Both homogeneous and heterogeneous scaffolds were generated from poly(L-lactic acid) methacrylated in supercritical carbon dioxide medium and were fabricated by two-photon polymerization. The homogeneous scaffolds consist of three layers of cylinders of the same diameter, whereas the heterogeneous (gradient pore sizes) scaffolds contain the middle layer of cylinders of increased diameter, imitating the native structure of spongy bone. To evaluate the osteoinductive properties of both types of scaffold, we performed in vitro and in vivo experiments. Multiphoton microscopy with fluorescence lifetime imaging microscopy was used for determining the metabolic states of MSCs, as a sensitive marker of cell differentiation. The results obtained from this approach were verified using standard markers of osteogenic differentiation and based on data from morphological analysis. RESULTS: The heterogeneous scaffolds showed improved osteoinductive properties, accelerated the metabolic rearrangements associated with osteogenic differentiation, and enhanced the efficiency of bone tissue recovery, thereby providing for both the development of appropriate morphology and mineralization. CONCLUSIONS: The authors suggest that the heterogeneous tissue constructs are a promising tool for the restoration of bone defects. And, furthermore, that our results demonstrate that the use of label-free bioimaging methods can be considered as an effective approach for intravital assessment of the efficiency of differentiation of MSCs on scaffolds.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/metabolism , Tissue Engineering/methods , Cell Differentiation , Stem Cells , Cells, Cultured
6.
Cells ; 12(3)2023 02 02.
Article in English | MEDLINE | ID: mdl-36766821

ABSTRACT

To reduce the risk of post-hepatectomy liver failure in patients with hepatic pathologies, it is necessary to develop an approach to express the intraoperative assessment of the liver's regenerative potential. Traditional clinical methods do not enable the prediction of the function of the liver remnant. Modern label-free bioimaging, using multiphoton microscopy in combination with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM), can both expand the possibilities for diagnosing liver pathologies and for assessing the regenerative potential of the liver. Using multiphoton and SHG microscopy, we assessed the structural state of liver tissue at different stages of induced steatosis and fibrosis before and after 70% partial hepatectomy in rats. Using FLIM, we also performed a detailed analysis of the metabolic state of the hepatocytes. We were able to determine criteria that can reveal a lack of regenerative potential in violated liver, such as the presence of zones with reduced NAD(P)H autofluorescence signals. Furthermore, for a liver with pathology, there was an absence of the jump in the fluorescence lifetime contributions of the bound form of NADH and NADPH the 3rd day after hepatectomy that is characteristic of normal liver regeneration. Such results are associated with decreased intensity of oxidative phosphorylation and of biosynthetic processes in pathological liver, which is the reason for the impaired liver recovery. This modern approach offers an effective tool that can be successfully translated into the clinic for express, intraoperative assessment of the regenerative potential of the pathological liver of a patient.


Subject(s)
Liver Regeneration , Liver , Rats , Animals , Liver/diagnostic imaging , Liver/pathology , Microscopy, Fluorescence , Optical Imaging , Fibrosis
7.
Int J Mol Sci ; 25(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38203221

ABSTRACT

The extracellular matrix (ECM), in which collagen is the most abundant protein, impacts many aspects of tumor physiology, including cellular metabolism and intracellular pH (pHi), as well as the efficacy of chemotherapy. Meanwhile, the role of collagen in differential cell responses to treatment within heterogeneous tumor environments remains poorly investigated. In the present study, we simultaneously monitored the changes in pHi and metabolism in living colorectal cancer cells in vitro upon treatment with a chemotherapeutic combination, FOLFOX (5-fluorouracil, oxaliplatin and leucovorin). The pHi was followed using the new pH-sensitive probe BC-Ga-Ir, working in the mode of phosphorescence lifetime imaging (PLIM), and metabolism was assessed from the autofluorescence of the metabolic cofactor NAD(P)H using fluorescence lifetime imaging (FLIM) with a two-photon laser scanning microscope. To model the ECM, 3D collagen-based hydrogels were used, and comparisons with conventional monolayer cells were made. It was found that FOLFOX treatment caused an early temporal intracellular acidification (reduction in pHi), followed by a shift to more alkaline values, and changed cellular metabolism to a more oxidative state. The presence of unstructured collagen markedly reduced the cytotoxic effects of FOLFOX, and delayed and diminished the pHi and metabolic responses. These results support the observation that collagen is a factor in the heterogeneous response of cancer cells to chemotherapy and a powerful regulator of their metabolic behavior.


Subject(s)
Neoplasms , Photons , Humans , Microscopy, Fluorescence , Collagen , Hydrogen-Ion Concentration
8.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555468

ABSTRACT

Assessment of T-cell response to the tumor is important for diagnosis of the disease and monitoring of therapeutic efficacy. For this, new non-destructive label-free methods are required. Fluorescence lifetime imaging (FLIM) of metabolic coenzymes is a promising innovative technology for the assessment of the functional status of cells. The purpose of this work was to test whether FLIM can resolve metabolic alterations that accompany T-cell reactivation to the tumors. The study was carried out on C57Bl/6 FoxP3-EGFP mice bearing B16F0 melanoma. Autofluorescence of the immune cells in fresh lymphatic nodes (LNs) was investigated. It was found that fluorescence lifetime parameters of nicotinamide adenine dinucleotide (phosphate) NAD(P)H are sensitive to tumor development. Effector T-cells in the LNs displayed higher contribution of free NADH, the form associated with glycolysis, in all tumors and the presence of protein-bound NADPH, associated with biosynthetic processes, in the tumors of large size. Flow cytometry showed that the changes in the NADH fraction of the effector T-cells correlated with their activation, while changes in NADPH correlated with cell proliferation. In conclusion, FLIM of NAD(P)H in fresh lymphoid tissue is a powerful tool for assessing the immune response to tumor development.


Subject(s)
NAD , Neoplasms , Animals , Mice , NAD/metabolism , NADP/metabolism , T-Lymphocytes/metabolism , Microscopy, Fluorescence
9.
Cancers (Basel) ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36428580

ABSTRACT

The extracellular matrix (ECM) plays an important role in regulation of many aspects of tumor growth and response to therapies. However, the specifics of the interaction of chemotherapeutic agents with cancer cells in the presence of collagen, the major component of ECM, is still poorly investigated. In this study, we explored distribution of doxorubicin (DOX) and its effects on cancer cells' metabolism in the presence of collagen with different structures in 3D models. For this, a combination of second harmonic generation imaging of collagen and multiphoton fluorescence microscopy of DOX, and metabolic cofactor NAD(P)H was used. It was found that collagen slowed down the diffusion of DOX and thus decreased the cellular drug uptake. Besides nuclei, DOX also targeted mitochondria leading to inhibition of oxidative phosphorylation, which was more pronounced in the cells growing in the absence of collagen. As a result, the cells in collagen displayed better viability upon treatment with DOX. Taken together, our data illustrate that tumor collagen contributes to heterogeneous and sub-optimal response to DOX and highlight the challenges in improving drug delivery and efficacy.

10.
Cells ; 11(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-36078136

ABSTRACT

iPSCs and their derivatives are the most promising cell sources for creating skin equivalents. However, their properties are not fully understood. In addition, new approaches and parameters are needed for studying cells in 3D models without destroying their organization. Thus, the aim of our work was to study and compare the metabolic status and pH of dermal spheroids created from dermal papilla cells differentiated from pluripotent stem cells (iDP) and native dermal papilla cells (hDP) using fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM). For this purpose, fluorescence intensities of NAD(P)H and FAD, fluorescence lifetimes, and the contributions of NAD(P)H, as well as the fluorescence intensities of SypHer-2 and BCECF were measured. iDP in spheroids were characterized by a more glycolytic phenotype and alkaline intra-cellular pH in comparison with hDP cells. Moreover, the metabolic activity of iDP in spheroids depends on the source of stem cells from which they were obtained. So, less differentiated and condensed spheroids from iDP-iPSDP and iDP-iPSKYOU are characterized by a more glycolytic phenotype compared to dense spheroids from iDP-DYP0730 and iDP-hES. FLIM and fluorescent microscopy in combination with the metabolism and pH are promising tools for minimally invasive and long-term analyses of 3D models based on stem cells.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Microscopy, Fluorescence , NAD/metabolism
11.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142177

ABSTRACT

Tumor cells are well adapted to grow in conditions of variable oxygen supply and hypoxia by switching between different metabolic pathways. However, the regulatory effect of oxygen on metabolism and its contribution to the metabolic heterogeneity of tumors have not been fully explored. In this study, we develop a methodology for the simultaneous analysis of cellular metabolic status, using the fluorescence lifetime imaging microscopy (FLIM) of metabolic cofactor NAD(P)H, and oxygen level, using the phosphorescence lifetime imaging (PLIM) of a new polymeric Ir(III)-based sensor (PIr3) in tumors in vivo. The sensor, derived from a polynorbornene and cyclometalated iridium(III) complex, exhibits the oxygen-dependent quenching of phosphorescence with a 40% longer lifetime in degassed compared to aerated solutions. In vitro, hypoxia resulted in a correlative increase in PIr3 phosphorescence lifetime and free (glycolytic) NAD(P)H fraction in cells. In vivo, mouse tumors demonstrated a high degree of cellular-level heterogeneity of both metabolic and oxygen states, and a lower dependence of metabolism on oxygen than cells in vitro. The small tumors were hypoxic, while the advanced tumors contained areas of normoxia and hypoxia, which was consistent with the pimonidazole assay and angiographic imaging. Dual FLIM/PLIM metabolic/oxygen imaging will be valuable in preclinical investigations into the effects of hypoxia on metabolic aspects of tumor progression and treatment response.


Subject(s)
Iridium , Neoplasms , Animals , Hypoxia , Mice , Microscopy, Fluorescence , NAD , Neoplasms/diagnostic imaging , Oxygen/metabolism
13.
Sci Rep ; 12(1): 4476, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296739

ABSTRACT

Cellular redox status and the level of reactive oxygen species (ROS) are important regulators of apoptotic potential, playing a crucial role in the growth of cancer cell and their resistance to apoptosis. However, the relationships between the redox status and ROS production during apoptosis remain poorly explored. In this study, we present an investigation on the correlations between the production of ROS, the redox ratio FAD/NAD(P)H, the proportions of the reduced nicotinamide cofactors NADH and NADPH, and caspase-3 activity in cancer cells at the level of individual cells. Two-photon excitation fluorescence lifetime imaging microscopy (FLIM) was applied to monitor simultaneously apoptosis using the genetically encoded sensor of caspase-3, mKate2-DEVD-iRFP, and the autofluorescence of redox cofactors in colorectal cancer cells upon stimulation of apoptosis with staurosporine, cisplatin or hydrogen peroxide. We found that, irrespective of the apoptotic stimulus used, ROS accumulation correlated well with both the elevated pool of mitochondrial, enzyme-bound NADH and caspase-3 activation. Meanwhile, a shift in the contribution of bound NADH could develop independently of the apoptosis, and this was observed in the case of cisplatin. An increase in the proportion of bound NADPH was detected only in staurosporine-treated cells, this likely being associated with a high level of ROS production and their resulting detoxification. The results of the study favor the discovery of new therapeutic strategies based on manipulation of the cellular redox balance, which could help improve the anti-tumor activity of drugs and overcome apoptotic resistance.


Subject(s)
NAD , Neoplasms , Apoptosis , Caspase 3/metabolism , Cisplatin , Microscopy, Fluorescence/methods , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Staurosporine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...