Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37375743

ABSTRACT

Personalized strategies in glioblastoma treatment are highly necessary. One of the possible approaches is drug screening using patient-derived tumor cells. However, this requires reliable methods for assessment of the response of tumor cells to treatment. Fluorescence lifetime imaging microscopy (FLIM) is a promising instrument to detect early cellular response to chemotherapy using the autofluorescence of metabolic cofactors. Here, we explored FLIM of NAD(P)H to evaluate the sensitivity of patient-derived glioma cells to temozolomide (TMZ) in vitro. Our results demonstrate that the more-responsive cell cultures displayed the longest mean fluorescence lifetime τm after TMZ treatment due to an increase in the protein-bound NAD(P)H fraction α2 associated with a shift to oxidative phosphorylation. The cell cultures that responded poorly to TMZ had generally shorter τm, i.e., were more glycolytic, and showed no or insignificant changes after treatment. The FLIM data correlate well with standard measurements of cellular drug response-cell viability and proliferation index and clinical response in patients. Therefore, FLIM of NAD(P)H provides a highly sensitive, label-free assay of treatment response directly on patient-derived glioblastoma cells and can become an innovative platform for individual drug screening for patients.

2.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555468

ABSTRACT

Assessment of T-cell response to the tumor is important for diagnosis of the disease and monitoring of therapeutic efficacy. For this, new non-destructive label-free methods are required. Fluorescence lifetime imaging (FLIM) of metabolic coenzymes is a promising innovative technology for the assessment of the functional status of cells. The purpose of this work was to test whether FLIM can resolve metabolic alterations that accompany T-cell reactivation to the tumors. The study was carried out on C57Bl/6 FoxP3-EGFP mice bearing B16F0 melanoma. Autofluorescence of the immune cells in fresh lymphatic nodes (LNs) was investigated. It was found that fluorescence lifetime parameters of nicotinamide adenine dinucleotide (phosphate) NAD(P)H are sensitive to tumor development. Effector T-cells in the LNs displayed higher contribution of free NADH, the form associated with glycolysis, in all tumors and the presence of protein-bound NADPH, associated with biosynthetic processes, in the tumors of large size. Flow cytometry showed that the changes in the NADH fraction of the effector T-cells correlated with their activation, while changes in NADPH correlated with cell proliferation. In conclusion, FLIM of NAD(P)H in fresh lymphoid tissue is a powerful tool for assessing the immune response to tumor development.


Subject(s)
NAD , Neoplasms , Animals , Mice , NAD/metabolism , NADP/metabolism , T-Lymphocytes/metabolism , Microscopy, Fluorescence
3.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142177

ABSTRACT

Tumor cells are well adapted to grow in conditions of variable oxygen supply and hypoxia by switching between different metabolic pathways. However, the regulatory effect of oxygen on metabolism and its contribution to the metabolic heterogeneity of tumors have not been fully explored. In this study, we develop a methodology for the simultaneous analysis of cellular metabolic status, using the fluorescence lifetime imaging microscopy (FLIM) of metabolic cofactor NAD(P)H, and oxygen level, using the phosphorescence lifetime imaging (PLIM) of a new polymeric Ir(III)-based sensor (PIr3) in tumors in vivo. The sensor, derived from a polynorbornene and cyclometalated iridium(III) complex, exhibits the oxygen-dependent quenching of phosphorescence with a 40% longer lifetime in degassed compared to aerated solutions. In vitro, hypoxia resulted in a correlative increase in PIr3 phosphorescence lifetime and free (glycolytic) NAD(P)H fraction in cells. In vivo, mouse tumors demonstrated a high degree of cellular-level heterogeneity of both metabolic and oxygen states, and a lower dependence of metabolism on oxygen than cells in vitro. The small tumors were hypoxic, while the advanced tumors contained areas of normoxia and hypoxia, which was consistent with the pimonidazole assay and angiographic imaging. Dual FLIM/PLIM metabolic/oxygen imaging will be valuable in preclinical investigations into the effects of hypoxia on metabolic aspects of tumor progression and treatment response.


Subject(s)
Iridium , Neoplasms , Animals , Hypoxia , Mice , Microscopy, Fluorescence , NAD , Neoplasms/diagnostic imaging , Oxygen/metabolism
5.
Sci Rep ; 12(1): 4476, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296739

ABSTRACT

Cellular redox status and the level of reactive oxygen species (ROS) are important regulators of apoptotic potential, playing a crucial role in the growth of cancer cell and their resistance to apoptosis. However, the relationships between the redox status and ROS production during apoptosis remain poorly explored. In this study, we present an investigation on the correlations between the production of ROS, the redox ratio FAD/NAD(P)H, the proportions of the reduced nicotinamide cofactors NADH and NADPH, and caspase-3 activity in cancer cells at the level of individual cells. Two-photon excitation fluorescence lifetime imaging microscopy (FLIM) was applied to monitor simultaneously apoptosis using the genetically encoded sensor of caspase-3, mKate2-DEVD-iRFP, and the autofluorescence of redox cofactors in colorectal cancer cells upon stimulation of apoptosis with staurosporine, cisplatin or hydrogen peroxide. We found that, irrespective of the apoptotic stimulus used, ROS accumulation correlated well with both the elevated pool of mitochondrial, enzyme-bound NADH and caspase-3 activation. Meanwhile, a shift in the contribution of bound NADH could develop independently of the apoptosis, and this was observed in the case of cisplatin. An increase in the proportion of bound NADPH was detected only in staurosporine-treated cells, this likely being associated with a high level of ROS production and their resulting detoxification. The results of the study favor the discovery of new therapeutic strategies based on manipulation of the cellular redox balance, which could help improve the anti-tumor activity of drugs and overcome apoptotic resistance.


Subject(s)
NAD , Neoplasms , Apoptosis , Caspase 3/metabolism , Cisplatin , Microscopy, Fluorescence/methods , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Staurosporine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...