Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e28590, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590892

ABSTRACT

Drying is a universal method applied for food preservation. To date, several models have been developed to evaluate drying kinetics. In this study, lychee was dried employing a hot air dryer, and the drying kinetics was evaluated by comparing the Newtonian model, Henderson and Pabis model, Page model, and Logarithmic model. However, temperature and relative humidity, the key driving forces for drying kinetics, are not considered by these models. Thus, an integrated drying model, as a function of temperature and relative humidity, was developed to predict the hot air-drying kinetics and mass transfer phenomena of lychee followed by the calibration and validation of the model with independent experimental datasets. The model validation consisted of Nash- Sutcliffe model coefficient (E), coefficient of determination (R2) and index of agreement (d) and all of them were found close to 1 indicating perfect model fit. Besides, the developed model was applied for process optimization and scenario analysis. The drying rate constant was found as a function of temperature and relative humidity that was high at high temperature and low relative humidity. Interestingly, temperature showed a higher effect on the drying rate constant compared to relative humidity. Overall, the present study will open a new window to developing further drying model of lychee to optimize quality its quality parameters.

2.
ACS Omega ; 6(22): 14481-14492, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34124471

ABSTRACT

Adsorption kinetic equation has been derived assuming that the process follows the behavior of a heterogeneous chemical reaction at the solid-liquid interface. This equation is converted into the Langmuir isotherm at equilibrium and describes well the unsteady-state adsorption process. Based on that, a working equation has been developed, which gives adsorption-rate-constant independent of operating parameters including concentration. Also, a kinetic model expressed as a sum of first- and second-order systems available in the literature has been applied (modified with the interface reaction concept) to determine the adsorption rate constant. Both methods gave similar results. Three dimensionless numbers have been developed to determine and distinguish pseudo-first-order and pseudo-second-order kinetics justified from the viewpoint of chemical kinetics. It is shown that curve-fitting with a high correlation coefficient could validate an empirical kinetic model, but the fitted model parameters could not automatically be related to chemical kinetic parameters if the model itself is not grounded on well-defined chemical kinetics. Finally, it is concluded that the currently applied empirical approach could not provide reliable data for comparison among similar systems, while the Langmuir kinetic equation developed based on the concept of heterogeneous reaction would be a good basis for standardization of the method for adsorption system characterization.

3.
Bioresour Technol ; 249: 858-868, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29136942

ABSTRACT

A microbial production process was developed to convert CO2 and valeric acid into tailored poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) bioplastics. The aim was to understand microbial PHBV production in mixotrophic conditions and to control the monomer distribution in the polymer. Continuous sparging of CO2 with pulse and pH-stat feeding of valeric acid were evaluated to produce PHBV copolyesters with predefined properties. The desired random monomer distribution was obtained by limiting the valeric acid concentration (below 1 gL-1). 1H-NMR, 13C-NMR and chromatographic analysis of the PHBV copolymer confirmed both the monomer distribution and the 3-hydroxyvalerate (3HV) fraction in the produced PHBV. A physical-based model was developed for mixotrophic PHBV production, which was calibrated and validated with independent experimental datasets. To produce PHBV with a predefined 3HV fraction, an operating diagram was constructed. This tool was able to predict the 3HV fraction with a very good accuracy (2% deviation).


Subject(s)
Carbon Dioxide , Polyesters , Hydroxybutyrates , Pentanoic Acids
4.
Bioprocess Biosyst Eng ; 38(10): 1903-14, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26149912

ABSTRACT

This paper addresses the estimation of the specific production rate of intracellular products and the modeling of the bioreactor volume dynamics in high cell density fed-batch reactors. In particular, a new model for the bioreactor volume is proposed, suitable to be used in high cell density cultures where large amounts of intracellular products are stored. Based on the proposed volume model, two forms of a high-order sliding mode observer are proposed. Each form corresponds to the cases with residual biomass concentration or volume measurement, respectively. The observers achieve finite time convergence and robustness to process uncertainties as the kinetic model is not required. Stability proofs for the proposed observer are given. The observer algorithm is assessed numerically and experimentally.


Subject(s)
Bacterial Load/methods , Bacterial Physiological Phenomena , Batch Cell Culture Techniques/methods , Bioreactors/microbiology , Carbon/metabolism , Models, Biological , Cell Count , Cell Proliferation/physiology , Computer Simulation
5.
Bioresour Technol ; 191: 213-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25997010

ABSTRACT

This study evaluates the effect of sodium (Na(+)) concentration on the growth and PHB production by Cupriavidus necator. Both biomass growth and PHB production were inhibited by Na(+): biomass growth became zero at 8.9 g/L Na(+) concentration while PHB production was completely stopped at 10.5 g/L Na(+). A mathematical model for pure culture heterotrophic PHB production was set up to describe the Na(+) inhibition effect. The parameters related to Na(+) inhibition were estimated based on shake flask experiments. The accumulated Na(+) showed non-linear inhibition effect on biomass growth but linear inhibition effect on PHB production kinetics. Fed-batch experiments revealed that a high accumulation of Na(+) due to a prolonged growth phase, using NaOH for pH control, decreased the subsequent PHB production. The model was validated based on independent experimental data sets, showing a good agreement between experimental data and simulation results.


Subject(s)
Cupriavidus necator/metabolism , Hydroxybutyrates/metabolism , Sodium/metabolism , Calibration , Models, Biological
6.
Bioprocess Biosyst Eng ; 38(6): 1179-90, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25634439

ABSTRACT

This work presents a general model-based methodology to scale-up fed-batch bioprocesses. The idea behind this approach is to establish a dynamics hierarchy, based on a model of the process, that allows the designer to determine the proper scale factors as well as at which point of the fed-batch the process should be scaled up. Here, concepts and tools of linear control theory, such as the singular value decomposition of the Hankel matrix, are exploited in the context of process design. The proposed scale-up methodology is first described in a bioprocesses general framework highlighting its main features, key variables and parameters. Then, it is applied to a polyhydroxybutyrate (PHB) fed-batch bioreactor and compared with three empirical criteria, that are traditionally employed to determine the scale factors of these processes, showing the usefulness and distinctive features of this proposal. Moreover, this methodology provides theoretical support to a frequently used empirical rule: scale-up aerobic bioreactors at constant volumetric oxygen transfer coefficient. Finally, similar process dynamic behavior and PHB production set at the laboratory scale are predicted at the new operating scale, while it is also determined that is rarely possible to reproduce similar dynamic behavior of the bioreactor using empirical scale-up criteria.


Subject(s)
Bioreactors , Hydroxybutyrates/metabolism , Aerobiosis , Biomass , Models, Theoretical
7.
Bioprocess Biosyst Eng ; 38(3): 557-67, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25307471

ABSTRACT

This paper focuses on the specific growth rate estimation problem in a Polyhydroxybutyrate bioplastic production process by industrial fermentation. The kinetics of the process are unknown and there are uncertainties in the model parameters and inputs. During the first hours of the growth phase of the process, biomass concentration can be measured online by an optical density sensor, but as cell density increases this method becomes ineffective and biomass measurement is lost. An asymptotic observer is developed to estimate the growth rate for the case without biomass measurement based on corrections made by a pH control loop. Furthermore, an exponential observer based on the biomass measurement is developed to estimate the growth rate during the first hours, which gives the initial condition to the asymptotic observer. Error bounds and robustness to uncertainties in the models and in the inputs are found. The estimation is independent of the kinetic models of the microorganism. The characteristic features of the observer are illustrated by numerical simulations and validated by experimental results.


Subject(s)
Biomass , Cupriavidus necator/growth & development , Hydroxybutyrates/metabolism , Models, Biological , Polyesters/metabolism
8.
Bioresour Technol ; 155: 272-80, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24457311

ABSTRACT

In this contribution a mechanistic model describing the production of polyhydroxybutyrate (PHB) through pure-culture fermentation was developed, calibrated and validated for two different substrates, namely glucose and waste glycerol. In both cases, non-growth-associated PHB production was triggered by applying nitrogen limitation. The occurrence of some growth-associated PHB production besides non-growth-associated PHB production was demonstrated, although it is inhibited in the presence of nitrogen. Other phenomena observed experimentally and described by the model included biomass growth on PHB and non-linear product inhibition of PHB production. The accumulated impurities from the waste substrate negatively affected the obtained maximum PHB content. Overall, the developed mathematical model provided an accurate prediction of the dynamic behavior of heterotrophic biomass growth and PHB production in a two-phase pure culture system.


Subject(s)
Bioreactors , Biosynthetic Pathways/physiology , Cupriavidus necator/metabolism , Hydroxybutyrates/metabolism , Models, Biological , Polyesters/metabolism , Biomass , Computer Simulation , Fermentation , Glucose/analysis , Glycerol/analysis , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...