Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 808: 152064, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34863751

ABSTRACT

The assessment of potential radon-hazardous environments is nowadays a critical issue in planning, monitoring, and developing appropriate mitigation strategies. Although some geological structures (e.g., fault systems) and other geological factors (e.g., radionuclide content, soil organic or rock weathering) can locally affect the radon occurrence, at the basis of a good implementation of radon-safe systems, optimized modelling at territorial scale is required. The use of spatial regression models, adequately combining different types of predictors, represents an invaluable tool to identify the relationships between radon and its controlling factors as well as to construct Geogenic Radon Potential (GRP) maps of an area. In this work, two GRP maps were developed based on field measurements of soil gas radon and thoron concentrations and gamma spectrometry of soil and rock samples of the Euganean Hills (northern Italy) district. A predictive model of radon concentration in soil gas was reconstructed taking into account the relationships among the soil gas radon and seven predictors: terrestrial gamma dose radiation (TGDR), thoron (220Rn), fault density (FD), soil permeability (PERM), digital terrain model (SLOPE), moisture index (TMI), heat load index (HLI). These predictors allowed to elaborate local spatial models by using the Empirical Bayesian Regression Kriging (EBRK) in order to find the best combination and define the GRP of the Euganean Hills area. A second GRP map based on the Neznal approach (GRPNEZ) has been modelled using the TGDR and 220Rn, as predictors of radon concentration, and FD as predictor of soil permeability. Then, the two GRP maps have been compared. Results highlight that the radon potential is mainly driven by the bedrock type but the presence of fault systems and topographic features play a key role in radon migration in the subsoil and its exhalation at the soil/atmosphere boundary.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Radon , Soil Pollutants, Radioactive , Air Pollutants, Radioactive/analysis , Bayes Theorem , Radon/analysis , Soil Pollutants, Radioactive/analysis , Spatial Analysis
2.
PLoS One ; 14(5): e0210922, 2019.
Article in English | MEDLINE | ID: mdl-31042756

ABSTRACT

Agricultural lands are the widest Human-modified ecosystems, making crop production the most extensive form of land use on Earth. However, in conventional agricultural land management, soil erosion may be boosted up to 1-2 orders of magnitude higher than the natural rates of soil production, making unproductive about the 30% of the world's arable. Nowadays in Europe, vineyards represent the most erosion-prone agricultural lands, especially in Mediterranean countries, showing the highest erosion rates in comparison to other type of land uses. Prosecco wine is produced in NE Italy by a rate of 400 M bottles per year, with the fastest growing demand in the global market at present. A production of 90 M bottles year-1 is currently running in the historical Prosecco DOCG (215 km2), in a steep hilly landscape of Veneto Region (Conegliano-Valdobbiadene). To sustain wine production, agricultural intensification is at present increasing, by re-setting of hillslopes and land use changes towards new vineyard plantations. The aim of this study is to estimate and to map potential soil erosion rate, calculating a sort of "soil footprint" for wine production in different agricultural land-management scenarios. RUSLE model was adopted to estimate potential soil erosion in Mg ha-1 year-1, by using high resolution topographic data (LiDAR), 10 years rainfall data analysis, detailed land use and local soil characteristics. For a conventional land-management scenario the estimated that total potential soil erosion in the Prosecco DOCG area is 411,266 Mg year-1, with an erosion rate of 19.5 Mg ha year-1. Modelled soil erosion is mainly clustered on steep slopes, with rates higher than 40 Mg ha-1 year-1. In Prosecco vineyards potential soil erosion could reach 300,180 Mg year-1, by a mean rate of 43.7 Mg ha-1 year-1, which is 31 times higher than the upper limit of tolerable soil erosion threshold defined for Europe. In contrast, simulation of different nature-based scenarios (hedgerows, buffer strips, and grass cover) showed soil erosion could be effectively reduced: a 100% inter-row grass cover showed a reduction of almost 3 times in vineyards (from 43.7 to 14.6 Mg ha-1 year-1), saving about 50% of soil in the whole Prosecco DOCG. The soil footprint modelled for a conventional land-management scenario is about 3.3 kg every bottle produced; in contrast it would be reduced to 1.1 kg/bottle in the completely green land-management scenario. This study, as the first estimation of potential soil erosion at Prosecco DOCG scale, suggests that an integrated and public soil erosion monitoring system is strongly needed in viticultural area, by implementing direct/indirect field measures with spatial analyses at agricultural landscape scale.


Subject(s)
Ecosystem , Agriculture , Conservation of Natural Resources , Environmental Monitoring/methods , Farms , Water Movements
3.
Sci Rep ; 5: 16398, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26549043

ABSTRACT

Millennial- and multi-centennial scale climate variability during the Holocene has been well documented, but its impact on the distribution and timing of extreme river floods has yet to be established. Here we present a meta-analysis of more than 2000 radiometrically dated flood units to reconstruct centennial-scale Holocene flood episodes in Europe and North Africa. Our data analysis shows a general increase in flood frequency after 5000 cal. yr BP consistent with a weakening in zonal circulation over the second half of the Holocene, and with an increase in winter insolation. Multi-centennial length phases of flooding in UK and central Europe correspond with periods of minimum solar irradiance, with a clear trend of increasing flood frequency over the last 1000 years. Western Mediterranean regions show synchrony of flood episodes associated with negative phases of the North Atlantic Oscillation that are out-of-phase with those evident within the eastern Mediterranean. This long-term flood record reveals complex but geographically highly interconnected climate-flood relationships, and provides a new framework to understand likely future spatial changes of flood frequency.

4.
Science ; 325(5940): 577, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19644113

ABSTRACT

Processing and interpretation of July 2007 digital visible and near-infrared aerial photographs, coupled by a digital terrain model, has allowed for detailed reconstruction of the topography and the paleoenvironmental setting of the Roman city of Altinum, shedding new light on the far origins of Venice. Images were taken during severe dry conditions, which stressed the maize and soy crops. The city walls and doors, the street network, dwellings, theaters, amphitheater, forum, emporia, basilica, and a complex network of rivers and canals have been mapped.

SELECTION OF CITATIONS
SEARCH DETAIL
...