Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498495

ABSTRACT

Newcastle disease (ND) is a highly transmissible and devastating disease that affects poultry and wild birds worldwide. Comprehensive knowledge regarding the characteristics and epidemiological factors of the ND virus (NDV) is critical for the control and prevention of ND. Effective vaccinations can prevent and control the spread of the NDV in poultry populations. For decades, the Democratic Republic of the Congo (DRC) has reported the impacts of ND on commercial and traditional poultry farming systems. The reports were preliminary clinical observations, and few cases were confirmed in the laboratory. However, data on the phylogenetic, genetic, and virological characteristics of NDVs circulating in the DRC are not available. In this study, the whole-genome sequences of three NDV isolates obtained using the next-generation sequencing method revealed two isolates that were a new variant of NDV, and one isolate that was clustered in the subgenotype VII.2. All DRC isolates were velogenic and were antigenically closely related to the vaccine strains. Our findings reveal that despite the circulation of the new variant, ND can be controlled in the DRC using the current vaccine. However, epidemiological studies should be conducted to elucidate the endemicity of the disease so that better control strategies can be implemented.


Subject(s)
Newcastle Disease/epidemiology , Newcastle Disease/virology , Newcastle disease virus/classification , Newcastle disease virus/genetics , Poultry Diseases/virology , Animals , Democratic Republic of the Congo/epidemiology , Genotype , Newcastle disease virus/isolation & purification , Phylogeny , Poultry/virology , Poultry Diseases/epidemiology , RNA, Viral/genetics , Viral Proteins/genetics , Whole Genome Sequencing
2.
Arch Virol ; 165(1): 87-96, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31707455

ABSTRACT

In May 2017, high mortality of chickens and Muscovy ducks due to the H5N8 highly pathogenic avian influenza virus (HPAIV) was reported in the Democratic Republic of Congo (DR Congo). In this study, we assessed the molecular, antigenic, and pathogenic features in poultry of the H5N8 HPAIV from the 2017 Congolese outbreaks. Phylogenetic analysis of the eight viral gene segments revealed that all 12 DR Congo isolates clustered in clade 2.3.4.4B together with other H5N8 HPAIVs isolated in Africa and Eurasia, suggesting a possible common origin of these viruses. Antigenically, a slight difference was observed between the Congolese isolates and a representative virus from group C in the same clade. After intranasal inoculation with a representative DR Congo virus, high pathogenicity was observed in chickens and Muscovy ducks but not in Pekin ducks. Viral replication was higher in chickens than in Muscovy duck and Pekin duck organs; however, neurotropism was pronounced in Muscovy ducks. Our data confirmed the high pathogenicity of the DR Congo virus in chickens and Muscovy ducks, as observed in the field. National awareness and strengthening surveillance in the region are needed to better control HPAIVs.


Subject(s)
Antigens, Viral/metabolism , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/immunology , Poultry Diseases/virology , Africa , Animals , Asia , Chickens , Democratic Republic of the Congo , Ducks/classification , Ducks/virology , Europe , High-Throughput Nucleotide Sequencing , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza in Birds/virology , Phylogeny , Phylogeography , Poultry Diseases/immunology , Species Specificity , Virus Replication
3.
PLoS Negl Trop Dis ; 5(8): e1226, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21829734

ABSTRACT

Palpalis-group tsetse, particularly the subspecies of Glossina palpalis and G. fuscipes, are the most important transmitters of human African trypanomiasis (HAT), transmitting >95% of cases. Traps and insecticide-treated targets are used to control tsetse but more cost-effective baits might be developed through a better understanding of the fly's host-seeking behaviour. Electrocuting grids were used to assess the numbers of G. palpalis palpalis and G. fuscipes quanzensis attracted to and landing on square or oblong targets of black cloth varying in size from 0.01 m(2) to 1.0 m(2). For both species, increasing the size of a square target from 0.01 m(2) (dimensions=0.1 × 0.1 m) to 1.0 m(2) (1.0 × 1.0 m) increased the catch ~4x however the numbers of tsetse killed per unit area of target declined with target size suggesting that the most cost efficient targets are not the largest. For G. f. quanzensis, horizontal oblongs, (1 m wide × 0.5 m high) caught ~1.8x more tsetse than vertical ones (0.5 m wide × 1.0 m high) but the opposite applied for G. p. palpalis. Shape preference was consistent over the range of target sizes. For G. p. palpalis square targets caught as many tsetse as the oblong; while the evidence is less strong the same appears to apply to G. f. quanzensis. The results suggest that targets used to control G. p. palpalis and G. f. quanzensis should be square, and that the most cost-effective designs, as judged by the numbers of tsetse caught per area of target, are likely to be in the region of 0.25 × 0.25 m(2). The preference of G. p. palpalis for vertical oblongs is unique amongst tsetse species, and it is suggested that this response might be related to its anthropophagic behaviour and hence importance as a vector of HAT.


Subject(s)
Behavior, Animal/physiology , Insect Control/methods , Insect Vectors/physiology , Tsetse Flies/physiology , Animals , Host-Parasite Interactions , Humans , Insecticides , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/transmission , Tsetse Flies/parasitology
4.
PLoS Negl Trop Dis ; 5(8): e1257, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21829743

ABSTRACT

Control of the Riverine (Palpalis) group of tsetse flies is normally achieved with stationary artificial devices such as traps or insecticide-treated targets. The efficiency of biconical traps (the standard control device), 1×1 m black targets and small 25×25 cm targets with flanking nets was compared using electrocuting sampling methods. The work was done on Glossina tachinoides and G. palpalis gambiensis (Burkina Faso), G. fuscipes quanzensis (Democratic Republic of Congo), G. f. martinii (Tanzania) and G. f. fuscipes (Kenya). The killing effectiveness (measured as the catch per m(2) of cloth) for small targets plus flanking nets is 5.5-15X greater than for 1 m(2) targets and 8.6-37.5X greater than for biconical traps. This has important implications for the costs of control of the Riverine group of tsetse vectors of sleeping sickness.


Subject(s)
Insect Control/economics , Insect Control/methods , Insect Vectors/physiology , Trypanosomiasis, African/prevention & control , Tsetse Flies/physiology , Animals , Cost-Benefit Analysis , Democratic Republic of the Congo , Female , Humans , Insect Control/instrumentation , Insect Vectors/parasitology , Kenya , Male , Tanzania , Trypanosoma brucei gambiense/isolation & purification , Tsetse Flies/parasitology
5.
PLoS Negl Trop Dis ; 3(5): e435, 2009.
Article in English | MEDLINE | ID: mdl-19434232

ABSTRACT

We are attempting to develop cost-effective control methods for the important vector of sleeping sickness, Glossina fuscipes spp. Responses of the tsetse flies Glossina fuscipes fuscipes (in Kenya) and G. f. quanzensis (in Democratic Republic of Congo) to natural host odours are reported. Arrangements of electric nets were used to assess the effect of cattle-, human- and pig-odour on (1) the numbers of tsetse attracted to the odour source and (2) the proportion of flies that landed on a black target (1x1 m). In addition responses to monitor lizard (Varanus niloticus) were assessed in Kenya. The effects of all four odours on the proportion of tsetse that entered a biconical trap were also determined. Sources of natural host odour were produced by placing live hosts in a tent or metal hut (volumes approximately 16 m(3)) from which the air was exhausted at approximately 2000 L/min. Odours from cattle, pigs and humans had no significant effect on attraction of G. f. fuscipes but lizard odour doubled the catch (P<0.05). Similarly, mammalian odours had no significant effect on landing or trap entry whereas lizard odour increased these responses significantly: landing responses increased significantly by 22% for males and 10% for females; the increase in trap efficiency was relatively slight (5-10%) and not always significant. For G. f. quanzensis, only pig odour had a consistent effect, doubling the catch of females attracted to the source and increasing the landing response for females by approximately 15%. Dispensing CO(2) at doses equivalent to natural hosts suggested that the response of G. f. fuscipes to lizard odour was not due to CO(2). For G. f. quanzensis, pig odour and CO(2) attracted similar numbers of tsetse, but CO(2) had no material effect on the landing response. The results suggest that identifying kairomones present in lizard odour for G. f. fuscipes and pig odour for G. f. quanzensis may improve the performance of targets for controlling these species.


Subject(s)
Insect Control/methods , Odorants , Trypanosomiasis, African/prevention & control , Tsetse Flies/parasitology , Animals , Cattle , Female , Humans , Insect Vectors/parasitology , Male , Swine , Trypanosomiasis, African/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...