Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 470: 115053, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38768688

ABSTRACT

BACKGROUND: Adverse experiences due to early life stress (ELS) or parental psychopathology such as schizophrenia (SZ) have a significant implication on individual susceptibility to psychiatric disorders in the future. However, it is not fully understood how ELS affects social-associated behaviors as well as the developing prefrontal cortex (PFC). OBJECTIVE: The aim of this study was to investigate the impact of ELS and ketamine induced schizophrenia like symptoms (KSZ) on anhedonia, social behavior and anxiety-like behavior. METHODS: Male and female Sprague-Dawley rat pups were allocated randomly into eight experimental groups, namely control, gestational stress (GS), GS+KSZ, maternal separation (MS), MS+KSZ pups, KSZ parents, KSZ parents and Pups and KSZ pups only. ELS was induced by subjecting the pups to GS and MS, while schizophrenia like symptoms was induced through subcutaneous administration of ketamine. Behavioral assessment included sucrose preference test (SPT) and elevated plus maze (EPM), followed by dopamine testing and analysis of astrocyte density. Statistical analysis involved ANOVA and post hoc Tukey tests, revealing significant group differences and yielding insights into behavioral and neurodevelopmental impacts. RESULTS: GS, MS, and KSZ (dams) significantly reduced hedonic response and increased anxiety-like responses (p < 0.05). Notably, the presence of normal parental mental health demonstrated a reversal of the observed decline in Glial Fibrillary Acidic Protein-positive astrocytes (GFAP+ astrocytes) (p < 0.05) and a reduction in anxiety levels, implying its potential protective influence on depressive-like symptoms and PFC astrocyte functionality. CONCLUSION: The present study provides empirical evidence supporting the hypothesis that exposure to ELS and KSZ on dams have a significant impact on the on development of anxiety and depressive like symptoms in Sprague Dawley rats, while positive parenting has a reversal effect.


Subject(s)
Anxiety , Depression , Ketamine , Maternal Deprivation , Prefrontal Cortex , Rats, Sprague-Dawley , Schizophrenia , Stress, Psychological , Animals , Female , Schizophrenia/metabolism , Schizophrenia/chemically induced , Ketamine/pharmacology , Male , Rats , Prefrontal Cortex/metabolism , Pregnancy , Disease Models, Animal , Prenatal Exposure Delayed Effects , Behavior, Animal/physiology , Anhedonia/physiology , Social Behavior , Schizophrenic Psychology , Dopamine/metabolism , Astrocytes/metabolism
2.
Front Integr Neurosci ; 17: 1251387, 2023.
Article in English | MEDLINE | ID: mdl-37928003

ABSTRACT

Background: Early life stress (ELS) and parental psychopathology, such as schizophrenia (SZ), have been associated with altered neurobiological and behavioral outcomes later in life. Previous studies have investigated the effects of ELS and parental SZ on various aspects of behavior, however, we have studied the combined effects of these stressors and how they interact, as individuals in real-life situations may experience multiple stressors simultaneously. Objective: The aim of this study was to investigate the impact of ELS and schizophrenia on locomotor activity, anxiety-like behavior, exploratory tendencies, and spatial memory in Sprague Dawley (SD) rats. Methods: Male and female SD pups were randomly assigned to eight groups: control, ELS, schizophrenia, and ELS + schizophrenia. ELS was induced by prenatal stress (maternal stress) and maternal separation (MS) during the first 2 weeks of life, while SZ was induced by subcutaneous administration of ketamine. Behavioral tests included an open field test (OFT) for motor abilities and a Morris water maze (MWM) for cognitive abilities. ANOVA and post hoc Tukey tests were utilized to analyze the data. Results: Our results show that ELS and parental psychopathology had enduring effects on SZ symptoms, particularly psychomotor retardation (p < 0.05). The OFT revealed increased anxiety-like behavior in the ELS group (p = 0.023) and the parental psychopathology group (p = 0.017) compared to controls. The combined ELS and parental psychopathology group exhibited the highest anxiety-like behavior (p = 0.006). The MWM analysis indicated impaired spatial memory in the ELS group (p = 0.012) and the combined ELS and parental psychopathology group (p = 0.003) compared to controls. Significantly, the exposure to ELS resulted in a decrease in the population of glial fibrillary acidic protein-positive (GFAP+) astrocytes. However, this effect was reversed by positive parental mental health. Conclusion: Our findings highlight the interactive effects of ELS and parental psychopathology on anxiety-like behavior and spatial memory in rats. ELS was linked to increased anxiety-like behavior, while SZ was associated with anhedonia-like behavior. Positive parenting augments neuroplasticity, synaptic function, and overall cognitive capacities.

3.
BMJ Open Sci ; 6(1): e100264, 2022.
Article in English | MEDLINE | ID: mdl-36387953

ABSTRACT

Introduction and objective: Neuropsychiatric disorders like schizophrenia are heterogeneous in that they occur because of the interaction of factors. These factors include but are not limited to genetic, epigenetic, neurobiological and environmental factors. Methylation of DNA, like other erpigenetic modifications, is risk factors for neuropsychiatric disorders. Candidate gene approach projects have produced contradictory results to find candidate gene methylation. The current genome-wide studies have limitations. Search strategy: An exhaustive search strategy was designed to recover studies on genome-wide DNA methylation in schizophrenia patients or schizophrenia rat models. The Medline (PubMed), SCOPUS and Web of Science, databases were searched, giving 4077 references in total. Screening and annotation: Studies will undergo two phases of screening, title and abstract screening and article screening, for inclusion by two reviewers. A third reviewer will resolve any disagreements in the article screening phase. Data will be collected using the Systematic Review Facility (http://syrf.org.uk/) tool. All included studies will undergo study quality and risk of bias assessment. Data management and reporting: Data will be extracted and used to calculate effect sizes. For the purpose of this meta-analysis, a random effects model will be used to combine effect sizes. Heterogeneity will be assessed, and the sources identified. A risk-of-bias assessment will be carried out to assess the quality of the studies. An assessment of publication bias will also be carried out. Ethics and dissemination: No ethical approval is required as there are no participants in the study. We will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines and disseminate the findings through publication and conference presentation. PROSPERO registration number: CRD42021283159.

4.
Cells ; 10(11)2021 10 26.
Article in English | MEDLINE | ID: mdl-34831111

ABSTRACT

Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.


Subject(s)
DNA Methylation/genetics , Schizophrenia/genetics , Biomarkers/blood , Epigenesis, Genetic , Genome-Wide Association Study , Humans , Precision Medicine , Schizophrenia/blood
5.
Int J Dev Neurosci ; 81(5): 428-437, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33932039

ABSTRACT

The maternal system's exposure to pathogens influences foetal brain development through the influx of maternal cytokines and activation of the foetal immune status to a persistent inflammatory state characterised by glia cell activation. Neuroinflammation influences the blood-brain barrier's (BBB) permeability allowing peripheral immune cell trafficking into the brain. Mycobacterium tuberculosis (Mtb) is a pathogen that causes Tuberculosis (TB), a global pandemic responsible for health and economic burdens. Although it is known that maternal infections increase the risk of Autism spectrum disorder (ASD), it is not known whether gestational Mtb infections also contribute to impaired foetal neurodevelopment. Here we infect pregnant Balb/c mice with Mtb H37Rv and Valproic acid (VPA) individually and in combination. Neuroinflammation was measured by assessing microglia and astrocyte population in the prefrontal cortex (PFC) and cerebellum (CER) of pups. Mtb infection increased the microglia population and caused morphological changes to a reactive phenotype in the PFC. Also, the astrocyte population was significantly increased in the PFC of Mtb pups. The BBB permeability was determined by measuring the Evans Blue (EB) dye concentration in the PFC and CER 1 hr post receiving intravenous EB-dye injection. We found that prenatal Mtb exposure significantly increased the BBB's permeability in the PFC and CER of pups versus saline. Overall, our data demonstrate that prenatal exposure to Mtb predisposes offspring to a higher risk of BBB damage while inducing persistent neuroinflammation, which could lead to impaired neuronal development and function. These findings implicate a potential role of gestational Mtb infections in the aetiology of ASD.


Subject(s)
Blood-Brain Barrier/pathology , Cerebellum/pathology , Inflammation/pathology , Mycobacterium tuberculosis , Prefrontal Cortex/pathology , Tuberculosis/pathology , Adult , Animals , Astrocytes/drug effects , Autism Spectrum Disorder/etiology , Cell Count , Female , Humans , Mice , Mice, Inbred BALB C , Microglia/drug effects , Permeability , Pregnancy , Prenatal Exposure Delayed Effects , Valproic Acid/toxicity
6.
Article in English | MEDLINE | ID: mdl-33922864

ABSTRACT

The maternal system's exposure to pathogens during pregnancy influences fetal brain development causing a persistent inflammation characterized by elevated pro-inflammatory cytokine levels in offspring. Mycobacterium tuberculosis (Mtb) is a global pathogen that causes tuberculosis, a pandemic responsible for health and economic burdens. Although it is known that maternal infections increase the risk of autism spectrum disorder (ASD), it is not known whether Mtb infection is sufficient to induce ASD associated behaviors, immune dysregulation and altered expression of synaptic regulatory genes. The current study infected pregnant Balb/c mice with Mtb H37Rv and valproic acid (VPA) individually and in combination. Plasma cytokine profiles were measured in offspring using the Bio-plex Th17 pro mouse cytokine panel. Mtb infection increased plasma interleukin (IL)-6 and IL-17A, while tumor necrosis factor alpha (TNF-α), interferon (IFN)-γ and IL-1ß were reduced when compared with saline. Mtb-induced maternal immune activation (MIA) offspring displayed increased grooming behavior. The study also revealed dysregulation in gene expression of synaptic molecules in the cerebellum. MIA rescued the VPA-induced effects on self-grooming and social interaction behaviors. Our finding therefore highlights a potential role of Mtb as a MIA agent that can potentially contribute to ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mycobacterium tuberculosis , Prenatal Exposure Delayed Effects , Animals , Behavior, Animal , Cytokines/genetics , Female , Mice , Phenotype , Pregnancy
7.
Neuropsychiatr Dis Treat ; 16: 355-367, 2020.
Article in English | MEDLINE | ID: mdl-32099373

ABSTRACT

Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) remains prevalent in the anti-retroviral (ART) era. While there is a complex interplay of many factors in the neuropathogenesis of HAND, decreased neurotrophic synthesis has been shown to contribute to synaptic degeneration which is a hallmark of HAND neuropathology. Brain derived neurotrophic factor (BDNF) is the most abundant and synaptic-promoting neurotrophic factor in the brain and plays a critical role in both learning and memory. Reduced BDNF levels can worsen neurocognitive impairment in HIV-positive individuals across several domains. In this paper, we review the evidence from pre-clinical and clinical studies showing the neuroprotective roles of BDNF against viral proteins, effect on co-morbid mental health disorders, altered human microbiome and ART in HAND management. Potential applications of BDNF modulation in pharmacotherapeutic, cognitive and behavioral interventions in HAND are also discussed. Finally, research gaps and future research direction are identified with the aim of helping researchers to direct efforts to make these BDNF driven interventions improve the quality of life of patients living with HAND.

8.
Parkinsons Dis ; 2016: 6438783, 2016.
Article in English | MEDLINE | ID: mdl-26881180

ABSTRACT

Early life adversity increases the risk of mental disorders later in life. Chronic early life stress may alter neurotrophic factor gene expression including those for brain derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF) that are important in neuronal growth, survival, and maintenance. Maternal separation was used in this study to model early life stress. Following unilateral injection of a mild dose of 6-hydroxydopamine (6-OHDA), we measured corticosterone (CORT) in the blood and striatum of stressed and nonstressed rats; we also measured DNA methylation and BDNF and GDNF gene expression in the striatum using real time PCR. In the presence of stress, we found that there was increased corticosterone concentration in both blood and striatal tissue. Further to this, we found higher DNA methylation and decreased neurotrophic factor gene expression. 6-OHDA lesion increased neurotrophic factor gene expression in both stressed and nonstressed rats but this increase was higher in the nonstressed rats. Our results suggest that exposure to early postnatal stress increases corticosterone concentration which leads to increased DNA methylation. This effect results in decreased BDNF and GDNF gene expression in the striatum leading to decreased protection against subsequent insults later in life.

SELECTION OF CITATIONS
SEARCH DETAIL
...