Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1338191, 2024.
Article in English | MEDLINE | ID: mdl-38476948

ABSTRACT

Background: Approximately 30,000 non-citizens are living with HIV in Botswana, all of whom as of 2020 are eligible to receive free antiretroviral treatment (ART) within the country. We assessed the prevalence of HIV-1 mutational profiles [pre-treatment drug resistance (PDR) and acquired drug resistance (ADR)] among treatment-experienced (TE) and treatment-naïve (TN) non-citizens living with HIV in Botswana. Methods: A total of 152 non-citizens living with HIV were enrolled from a migrant HIV clinic at Independence Surgery, a private practice in Botswana from 2019-2021. Viral RNA isolated from plasma samples were genotyped for HIV drug resistance (HIVDR) using Sanger sequencing. Major known HIV drug resistance mutations (DRMs) in the pol region were determined using the Stanford HIV Drug Resistance Database. The proportions of HIV DRMs amongst TE and TN non-citizens were estimated with 95% confidence intervals (95% CI) and compared between the two groups. Results: A total of 60/152 (39.5%) participants had a detectable viral load (VL) >40 copies/mL and these were included in the subsequent analyses. The median age at enrollment was 43 years (Q1, Q3: 38-48). Among individuals with VL > 40 copies/mL, 60% (36/60) were treatment-experienced with 53% (19/36) of them on Atripla. Genotyping had a 62% (37/60) success rate - 24 were TE, and 13 were TN. A total of 29 participants (78.4, 95% CI: 0.12-0.35) had major HIV DRMs, including at least one non-nucleoside reverse transcriptase inhibitor (NNRTI) associated DRM. In TE individuals, ADR to any antiretroviral drug was 83.3% (20/24), while for PDR was 69.2% (9/13). The most frequent DRMs were nucleoside reverse transcriptase inhibitors (NRTIs) M184V (62.1%, 18/29), NNRTIs V106M (41.4%, 12/29), and K103N (34.4%, 10/29). No integrase strand transfer inhibitor-associated DRMs were reported. Conclusion: We report high rates of PDR and ADR in ART-experienced and ART-naïve non-citizens, respectively, in Botswana. Given the uncertainty of time of HIV acquisition and treatment adherence levels in this population, routine HIV-1C VL monitoring coupled with HIVDR genotyping is crucial for long-term ART success.

2.
Sci Rep ; 13(1): 12282, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507444

ABSTRACT

Abortifacient pathogens induce substantial economic losses in the livestock industry worldwide, and many of these pathogens are zoonotic, impacting human health. As Brucella spp., Coxiella burnetii, Leptospira spp., and Listeria monocytogenes cause abortion, rapid differential molecular diagnostic tests are needed to facilitate early and accurate detection of abortion to establish effective control measures. However, the available molecular methods are laborious, time-consuming, or costly. Therefore, we developed and validated a novel multiplex real-time polymerase chain reaction (qPCR) method based on high-resolution melting (HRM) curve analysis to simultaneously detect and differentiate four zoonotic abortifacient agents in cattle, goats, and sheep. Our HRM assay generated four well-separated melting peaks allowing the differentiation between the four zoonotic abortifacients. Out of 216 DNA samples tested, Brucella spp. was detected in 45 samples, Coxiella burnetii in 57 samples, Leptospira spp. in 12 samples, and Listeria monocytogenes in 19 samples, co-infection with Brucella spp. and Coxiella burnetii in 41 samples, and 42 samples were negative. This assay demonstrated good analytical sensitivity, specificity, and reproducibility. This is a valuable rapid, cost-saving, and reliable diagnostic tool for detecting individual and co-infections for zoonotic abortifacient agents in ruminants.


Subject(s)
Abortifacient Agents , Brucella , Cattle Diseases , Coxiella burnetii , Goat Diseases , Leptospira , Sheep Diseases , Pregnancy , Female , Animals , Cattle , Sheep/genetics , Humans , Goats/genetics , Reproducibility of Results , Ruminants/genetics , Coxiella burnetii/genetics , Real-Time Polymerase Chain Reaction/methods , Leptospira/genetics , Brucella/genetics , Sheep Diseases/diagnosis , Cattle Diseases/diagnosis
3.
HLA ; 102(2): 192-205, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36999238

ABSTRACT

HLA allelic variation has been well studied and documented in many parts of the world. However, African populations have been relatively under-represented in studies of HLA variation. We have characterized HLA variation from 489 individuals belonging to 13 ethnically diverse populations from rural communities from the African countries of Botswana, Cameroon, Ethiopia, and Tanzania, known to practice traditional subsistence lifestyles using next generation sequencing (Illumina) and long-reads from Oxford Nanopore Technologies. We identified 342 distinct alleles among the 11 HLA targeted genes: HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQA1, -DQB1, -DPA1, and -DPB1, with 140 of those alleles containing novel sequences that were submitted to the IPD-IMGT/HLA database. Sixteen of the 140 alleles contained novel content within the exonic regions of the genes, while 110 alleles contained novel intronic variants. Four alleles were found to be recombinants of already described HLA alleles and 10 alleles extended the sequence content of already described alleles. All 140 alleles include complete allelic sequence from the 5' UTR to the 3' UTR that are inclusive of all exons and introns. This report characterizes the HLA allelic variation from these individuals and describes the novel allelic variation present within these specific African populations.


Subject(s)
Genes, MHC Class II , Genomics , Humans , Alleles , Africa South of the Sahara
4.
J Glob Antimicrob Resist ; 31: 128-134, 2022 12.
Article in English | MEDLINE | ID: mdl-35973671

ABSTRACT

OBJECTIVES: There are limited data on the prevalence of doravirine (DOR)-associated drug resistance mutations in people with HIV (PWH) in Botswana. This cross-sectional, retrospective study aimed to explore the prevalence of DOR-associated resistance mutations among ART-naïve and -experienced PWH in Botswana enrolled in the population-based Botswana Combination Prevention Project (BCPP). METHODS: A total of 6078 HIV-1C pol sequences were analysed for DOR-associated resistance mutations using the Stanford HIV drug resistance database, and their levels were predicted according to the Stanford DRM penalty scores and resistance interpretation. Virologic failure was defined as HIV-1 RNA load (VL) >400 copies/mL. RESULTS: Among 6078 PWH, 5999 (99%) had known ART status, and 4529/5999 (79%) were on ART at time of sampling. The suppression rate among ART-experienced was 4517/4729 (96%). The overall prevalence of any DOR-associated resistance mutations was 181/1473 (12.3% [95% confidence interval {CI}: 10.7-14.1]); by ART status: 42/212 (19.8% [95% CI: 14.7-25.4]) among ART-failing individuals (VL ≥400 copies/mL) and 139/1261 (11.0% [95% CI: 9.3-12.9]) among ART-naïve individuals (P < 0.01). Intermediate DOR-associated resistance mutations were observed in 106/1261 (7.8% [95% CI: 6.9-10.1]) in ART-naïve individuals and 29/212 (13.7% [95% CI: 9.4-8.5]) among ART-experienced participants (P < 0.01). High-level DOR-associated resistance mutations were observed in 33/1261 (2.6% [95% CI: 1.8-3.7]) among ART-naïve and 13/212 (6.1% [95% CI: 3.6-10.8]) among ART-failing PWH (P < 0.01). PWH failing ART with at least one EFV/NVP-associated resistance mutation had high prevalence 13/67 (19.4%) of high-level DOR-associated resistance mutations. CONCLUSION: DOR-associated mutations were rare (11.0%) among ART-naive PWH but present in 62.7% of Botswana individuals who failed NNRTI-based ART with at least one EFV/NVP-associated resistance mutation. Testing for HIV drug resistance should underpin the use of DOR in PWH who have taken first-generation NNRTIs.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Adult , Humans , HIV-1/genetics , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Drug Resistance, Viral/genetics , Cross-Sectional Studies , Retrospective Studies , Botswana , HIV Infections/epidemiology , Mutation
5.
Medicine (Baltimore) ; 101(28): e29577, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35838991

ABSTRACT

BACKGROUND: Individuals living with human immunodeficiency virus (HIV) who experience virological failure (VF) after combination antiretroviral therapy (cART) initiation may have had low-frequency drug resistance mutations (DRMs) at cART initiation. There are no data on low-frequency DRMs among cART-naïve HIV-positive individuals in Botswana. METHODS: We evaluated the prevalence of low-frequency DRMs among cART-naïve individuals previously sequenced using Sanger sequencing. The generated pol amplicons were sequenced by next-generation sequencing. RESULTS: We observed low-frequency DRMs (detected at <20% in 33/103 (32%) of the successfully sequenced individuals, of whom four also had mutations detected at >20%. K65R was the most common low-frequency DRM detected in 8 individuals. Eighty-two of the 103 individuals had follow-up viral load data while on cART. Twenty-seven of the 82 individuals harbored low-frequency DRMs. Only 12 of 82 individuals experienced VF. The following low-frequency DRMs were observed in four individuals experiencing VF: K65R, K103N, V108I, and Y188C. No statistically significant difference was observed in the prevalence of low-frequency DRMs between individuals experiencing VF (4/12) and those not experiencing VF (23/70) (P = .97). However, individuals with non-nucleoside reverse transcriptase inhibitors-associated low-frequency DRMs were 2.68 times more likely to experience VF (odds ratio, 2.68; 95% confidential interval, 0.4-13.9) compared with those without (P = .22). CONCLUSION: Next-generation sequencing was able to detect low-frequency DRMs in this cohort in Botswana, but these DRMs did not contribute significantly to VF.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , Botswana/epidemiology , Drug Resistance, Viral/genetics , Genotype , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV-1/genetics , Humans , Mutation , Viral Load
6.
Front Genet ; 12: 720213, 2021.
Article in English | MEDLINE | ID: mdl-34512729

ABSTRACT

Human leucocyte antigen (HLA) class I molecules present endogenously processed antigens to T-cells and have been linked to differences in HIV-1 disease progression. HLA allelotypes show considerable geographical and inter-individual variation, as does the rate of progression of HIV-1 disease, with long-term non-progression (LTNP) of disease having most evidence of an underlying genetic contribution. However, most genetic analyses of LTNP have occurred in adults of European ancestry, limiting the potential transferability of observed associations to diverse populations who carry the burden of disease. This is particularly true of HIV-1 infected children. Here, using exome sequencing (ES) to infer HLA allelotypes, we determine associations with HIV-1 LTNP in two diverse African pediatric populations. We performed a case-control association study of 394 LTNPs and 420 rapid progressors retrospectively identified from electronic medical records of pediatric HIV-1 populations in Uganda and Botswana. We utilized high-depth ES to perform high-resolution HLA allelotyping and assessed evidence of association between HLA class I alleles and LTNP. Sixteen HLA alleles and haplotypes had significantly different frequencies between Uganda and Botswana, with allelic differences being more prominent in HLA-A compared to HLA-B and C allelotypes. Three HLA allelotypes showed association with LTNP, including a novel association in HLA-C (HLA-B∗57:03, aOR 3.21, Pc = 0.0259; B∗58:01, aOR 1.89, Pc = 0.033; C∗03:02, aOR 4.74, Pc = 0.033). Together, these alleles convey an estimated population attributable risk (PAR) of non-progression of 16.5%. We also observed novel haplotype associations with HLA-B∗57:03-C∗07:01 (aOR 5.40, Pc = 0.025) and HLA-B∗58:01-C∗03:02 (aOR 4.88, Pc = 0.011) with a PAR of 9.8%, as well as a previously unreported independent additive effect and heterozygote advantage of HLA-C∗03:02 with B∗58:01 (aOR 4.15, Pc = 0.005) that appears to limit disease progression, despite weak LD (r 2 = 0.18) between these alleles. These associations remained irrespective of gender or country. In one of the largest studies of HIV in Africa, we find evidence of a protective effect of canonical HLA-B alleles and a novel HLA-C association that appears to augment existing HIV-1 control alleles in pediatric populations. Our findings outline the value of using multi-ethnic populations in genetic studies and offer a novel HIV-1 association of relevance to ongoing vaccine studies.

7.
Am J Phys Anthropol ; 167(3): 656-671, 2018 11.
Article in English | MEDLINE | ID: mdl-30192370

ABSTRACT

OBJECTIVES: We investigated the genetic history of southern African populations with a special focus on their paternal history. We reexamined previous claims that the Y-chromosome haplogroup E1b1b (E-M293) was brought to southern Africa by pastoralists from eastern Africa, and investigated patterns of sex-biased gene flow in southern Africa. MATERIALS AND METHODS: We analyzed previously published complete mtDNA genome sequences and ∼900 kb of NRY sequences from 23 populations from Namibia, Botswana, and Zambia, as well as haplogroup frequencies from a large sample of southern African populations and 23 newly genotyped Y-linked STR loci for samples assigned to haplogroup E1b1b. RESULTS: Our results support an eastern African origin for Y-chromosome haplogroup E1b1b (E-M293); however, its current distribution in southern Africa is not strongly associated with pastoralism, suggesting more complex demographic events and/or changes in subsistence practices in this region. The Bantu expansion in southern Africa had a notable genetic impact and was probably a rapid, male-dominated expansion. Our finding of a significant increase in the intensity of the sex-biased gene flow from north to south may reflect changes in the social dynamics between Khoisan and Bantu groups over time. CONCLUSIONS: Our study shows that the population history of southern Africa has been complex, with different immigrating groups mixing to different degrees with the autochthonous populations. The Bantu expansion led to heavily sex-biased admixture as a result of interactions between Khoisan females and Bantu males, with a geographic gradient which may reflect changes in the social dynamics between Khoisan and Bantu groups over time.


Subject(s)
Black People/genetics , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Gene Flow/genetics , Africa, Southern , Anthropology, Physical , Female , Genetics, Population , Haplotypes/genetics , Human Migration , Humans , Male
8.
Am J Hum Genet ; 102(5): 731-743, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29706352

ABSTRACT

Large-scale, population-based genomic studies have provided a context for modern medical genetics. Among such studies, however, African populations have remained relatively underrepresented. The breadth of genetic diversity across the African continent argues for an exploration of local genomic context to facilitate burgeoning disease mapping studies in Africa. We sought to characterize genetic variation and to assess population substructure within a cohort of HIV-positive children from Botswana-a Southern African country that is regionally underrepresented in genomic databases. Using whole-exome sequencing data from 164 Batswana and comparisons with 150 similarly sequenced HIV-positive Ugandan children, we found that 13%-25% of variation observed among Batswana was not captured by public databases. Uncaptured variants were significantly enriched (p = 2.2 × 10-16) for coding variants with minor allele frequencies between 1% and 5% and included predicted-damaging non-synonymous variants. Among variants found in public databases, corresponding allele frequencies varied widely, with Botswana having significantly higher allele frequencies among rare (<1%) pathogenic and damaging variants. Batswana clustered with other Southern African populations, but distinctly from 1000 Genomes African populations, and had limited evidence for admixture with extra-continental ancestries. We also observed a surprising lack of genetic substructure in Botswana, despite multiple tribal ethnicities and language groups, alongside a higher degree of relatedness than purported founder populations from the 1000 Genomes project. Our observations reveal a complex, but distinct, ancestral history and genomic architecture among Batswana and suggest that disease mapping within similar Southern African populations will require a deeper repository of genetic variation and allelic dependencies than presently exists.


Subject(s)
Black People/genetics , Exome Sequencing , Genetic Variation , Botswana , Cohort Studies , Gene Pool , Genetics, Population , Genome, Human , Geography , Humans , Phylogeny , Principal Component Analysis
9.
AAS Open Res ; 1: 3, 2018.
Article in English | MEDLINE | ID: mdl-30714022

ABSTRACT

Background: Here, we describe how the Collaborative African Genomics Network ( CAfGEN) of the Human Heredity and Health in Africa (H3Africa) consortium is using genomics to probe host genetic factors important to the progression of HIV and HIV-tuberculosis (TB) coinfection in sub-Saharan Africa.   The H3Africa was conceived to facilitate the application of genomics technologies to improve health across Africa..          Methods: CAfGEN is an H3Africa collaborative centre comprising expertise from the University of Botswana; Makerere University; Baylor College of Medicine Children's Clinical Centers of Excellence (COEs) in Botswana, Uganda, and Swaziland; as well as Baylor College of Medicine, Texas. The COEs provide clinical expertise for community engagement, participant recruitment and sample collection while the three University settings facilitate processing and management of genomic samples and provide infrastructure and training opportunities to sustain genomics research. Results: The project has focused on utilizing whole-exome sequencing to identify genetic variants contributing to extreme HIV disease progression phenotypes in children, as well as RNA sequencing and integrated genomics to identify host genetic factors associated with TB disease progression among HIV-positive children. These cohorts, developed using the COEs' electronic medical records, are exceptionally well-phenotyped and present an unprecedented opportunity to assess genetic factors in individuals whose HIV was acquired by a different route than their adult counterparts in the context of a unique clinical course and disease pathophysiology. Conclusions: Our approach offers the prospect of developing a critical mass of well-trained, highly-skilled, continent-based African genomic scientists. To ensure long term genomics research sustainability in Africa, CAfGEN contributes to a wide range of genomics capacity and infrastructure development on the continent, has laid a foundation for genomics graduate programs at its institutions, and continues to actively promote genomics research through innovative forms of community engagement brokered by partnerships with governments and academia to support genomics policy formulation.

10.
Genet Med ; 19(7): 826-833, 2017 07.
Article in English | MEDLINE | ID: mdl-28383545

ABSTRACT

PURPOSE: The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside trainees' perspectives on their involvement. BACKGROUND: Historically, collaborations between high-income countries (HICs) and low- and middle-income countries (LMICs), or North-South collaborations, have been criticized for the lack of a mutually beneficial distribution of resources and research findings, often undermining LMICs. CAfGEN plans to address this imbalance in the genomics field through a program of technology and expertise transfer to the participating LMICs. METHODS: An overview of the training program is presented. Trainees from the CAfGEN project summarized their experiences, looking specifically at the training model, benefits of the program, challenges encountered relating to the cultural transition, and program outcomes after the first 2 years. CONCLUSION: Collaborative training programs like CAfGEN will not only help establish sustainable long-term research initiatives in LMICs but also foster stronger North-South and South-South networks. The CAfGEN model offers a framework for the development of training programs aimed at genomics education for those for whom genomics is not their "first language." Genet Med advance online publication 06 April 2017.


Subject(s)
Education, Graduate/methods , Education/methods , Genomics/education , Biomedical Research/education , Biomedical Research/methods , Botswana , Computational Biology/education , Curriculum , Female , Humans , International Cooperation , Male , Students , Uganda , Universities
11.
Curr Biol ; 24(8): 875-9, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24704073

ABSTRACT

Although southern African Khoisan populations are often assumed to have remained largely isolated during prehistory, there is growing evidence for a migration of pastoralists from eastern Africa some 2,000 years ago, prior to the arrival of Bantu-speaking populations in southern Africa. Eastern Africa harbors distinctive lactase persistence (LP) alleles, and therefore LP alleles in southern African populations may be derived from this eastern African pastoralist migration. We sequenced the lactase enhancer region in 457 individuals from 18 Khoisan and seven Bantu-speaking groups from Botswana, Namibia, and Zambia and additionally genotyped four short tandem repeat (STR) loci that flank the lactase enhancer region. We found nine single-nucleotide polymorphisms, of which the most frequent is -14010(∗)C, which was previously found to be associated with LP in Kenya and Tanzania and to exhibit a strong signal of positive selection. This allele occurs in significantly higher frequency in pastoralist groups and in Khoe-speaking groups in our study, supporting the hypothesis of a migration of eastern African pastoralists that was primarily associated with Khoe speakers. Moreover, we find a signal of ongoing positive selection in all three pastoralist groups in our study, as well as (surprisingly) in two foraging groups.


Subject(s)
Black People/genetics , Ethnicity/genetics , Human Migration/history , Lactase/genetics , Selection, Genetic , Africa, Southern , Gene Frequency , Genetics, Population , Genotype , Geography , Haplotypes/genetics , History, Ancient , Humans , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics
12.
Am J Phys Anthropol ; 153(3): 435-48, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24323467

ABSTRACT

The Khoisan populations of southern Africa are known to harbor some of the deepest-rooting lineages of human mtDNA; however, their relationships are as yet poorly understood. Here, we report the results of analyses of complete mtDNA genome sequences from nearly 700 individuals representing 26 populations of southern Africa who speak diverse Khoisan and Bantu languages. Our data reveal a multilayered history of the indigenous populations of southern Africa, who are likely to be the result of admixture of different genetic substrates, such as resident forager populations and pre-Bantu pastoralists from East Africa. We find high levels of genetic differentiation of the Khoisan populations, which can be explained by the effect of drift together with a partial uxorilocal/multilocal residence pattern. Furthermore, there is evidence of extensive contact, not only between geographically proximate groups, but also across wider areas. The results of this contact, which may have played a role in the diffusion of common cultural and linguistic features, are especially evident in the Khoisan populations of the central Kalahari.


Subject(s)
Black People/genetics , DNA, Mitochondrial/genetics , Genetics, Population , Anthropology, Physical , Botswana , Cluster Analysis , Databases, Genetic , Female , Genetic Drift , Haplotypes/genetics , Humans , Male , Namibia
13.
Am J Hum Genet ; 92(2): 285-92, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23332919

ABSTRACT

Among the deepest-rooting clades in the human mitochondrial DNA (mtDNA) phylogeny are the haplogroups defined as L0d and L0k, which are found primarily in southern Africa. These lineages are typically present at high frequency in the so-called Khoisan populations of hunter-gatherers and herders who speak non-Bantu languages, and the early divergence of these lineages led to the hypothesis of ancient genetic substructure in Africa. Here we update the phylogeny of the basal haplogroups L0d and L0k with 500 full mtDNA genome sequences from 45 southern African Khoisan and Bantu-speaking populations. We find previously unreported subhaplogroups and greatly extend the amount of variation and time-depth of most of the known subhaplogroups. Our major finding is the definition of two ancient sublineages of L0k (L0k1b and L0k2) that are present almost exclusively in Bantu-speaking populations from Zambia; the presence of such relic haplogroups in Bantu speakers is most probably due to contact with ancestral pre-Bantu populations that harbored different lineages than those found in extant Khoisan. We suggest that although these populations went extinct after the immigration of the Bantu-speaking populations, some traces of their haplogroup composition survived through incorporation into the gene pool of the immigrants. Our findings thus provide evidence for deep genetic substructure in southern Africa prior to the Bantu expansion that is not represented in extant Khoisan populations.


Subject(s)
DNA, Mitochondrial/genetics , Phylogeny , Africa, Southern , Base Sequence , Computer Simulation , Ethnicity/genetics , Genetics, Population , Geography , Human Migration , Humans , Language , Molecular Sequence Data , Open Reading Frames/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...