Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Sci Rep ; 14(1): 16397, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013969

ABSTRACT

Bird sex determination is fundamental in various ecological and biological studies, although many avian species cannot be sexed visually due to their monomorphic and/or monochromatic appearance. Thus, reliable laboratory methods for sexing are a prerequisite. Most avian nestlings lack sex-related signs, including the Eurasian pygmy owl (Glaucidium passerinum). We performed laboratory sex determination analysis of this species using blood samples of 242 juveniles and nine adults. It relied on the qPCR of the specific intron from the chromo-helicase DNA-binding protein 1 gene. We tested three primer sets, the P2/P8, 2550F/2718R, and CHD1F/CHD1R, commonly used for bird laboratory sexing. The outcomes were displayed on an agarose gel electrophoresis and a plot from melt curve analysis, which had not been previously conducted in Eurasian pygmy owls. We found that only primer set CHD1F/CHD1R proved reliable, as the only one determined sex with one and two band/s and peak/s on the electrophoresis and the melt curve plot for males and females, respectively. The other two primer pairs failed and depicted one band/peak in all specimens regardless of their sex. Therefore, we recommend performing Eurasian pygmy owls' laboratory sexing by qPCR with CHD1F/CHD1R primers only.


Subject(s)
DNA Primers , Sex Determination Analysis , Strigiformes , Animals , Sex Determination Analysis/methods , Female , Male , Strigiformes/genetics , DNA Primers/genetics
2.
Animals (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929398

ABSTRACT

Probiotics are a potential strategy for salmonellosis control. A defined pig microbiota (DPM) mixture of nine bacterial strains previously exhibited probiotic and anti-Salmonella properties in vitro. Therefore, we evaluated its gut colonization ability and protection effect against S. typhimurium LT2-induced infection in the gnotobiotic piglet model. The DPM mixture successfully colonized the piglet gut and was stable and safe until the end of the experiment. The colon was inhabited by about 9 log CFU g-1 with a significant representation of bifidobacteria and lactobacilli compared to ileal levels around 7-8 log CFU g-1. Spore-forming clostridia and bacilli seemed to inhabit the environment only temporarily. The bacterial consortium contributed to the colonization of the gut at an entire length. The amplicon profile analysis supported the cultivation trend with a considerable representation of lactobacilli with bacilli in the ileum and bifidobacteria with clostridia in the colon. Although there was no significant Salmonella-positive elimination, it seems that the administered bacteria conferred the protection of infected piglets because of the slowed delayed infection manifestation without translocations of Salmonella cells to the blood circulation. Due to its colonization stability and potential protective anti-Salmonella traits, the DPM mixture has promising potential in pig production applications. However, advanced immunological tests are needed.

3.
Front Endocrinol (Lausanne) ; 15: 1326179, 2024.
Article in English | MEDLINE | ID: mdl-38774229

ABSTRACT

Aims/hypothesis: The aim of this substudy (Eudra CT No:2019-001997-27)was to assess ATB availability in patients with infected diabetic foot ulcers(IDFUs)in the context of microcirculation and macrocirculation status. Methods: For this substudy, we enrolled 23 patients with IDFU. Patients were treated with boluses of amoxicillin/clavulanic acid(AMC)(12patients) or ceftazidime(CTZ)(11patients). After induction of a steady ATB state, microdialysis was performed near the IDFU. Tissue fluid samples from the foot and blood samples from peripheral blood were taken within 6 hours. ATB potential efficacy was assessed by evaluating the maximum serum and tissue ATB concentrations(Cmax and Cmax-tissue)and the percentage of time the unbound drug tissue concentration exceeds the minimum inhibitory concentration (MIC)(≥100% tissue and ≥50%/60% tissue fT>MIC). Vascular status was assessed by triplex ultrasound, ankle-brachial and toe-brachial index tests, occlusive plethysmography comprising two arterial flow phases, and transcutaneous oxygen pressure(TcPO2). Results: Following bolus administration, the Cmax of AMC was 91.8 ± 52.5 µgmL-1 and the Cmax-tissue of AMC was 7.25 ± 4.5 µgmL-1(P<0.001). The Cmax for CTZ was 186.8 ± 44.1 µgmL-1 and the Cmax-tissue of CTZ was 18.6 ± 7.4 µgmL-1(P<0.0001). Additionally, 67% of patients treated with AMC and 55% of those treated with CTZ achieved tissue fT>MIC levels exceeding 50% and 60%, respectively. We observed positive correlations between both Cmax-tissue and AUCtissue and arterial flow. Specifically, the correlation coefficient for the first phase was r=0.42; (P=0.045), and for the second phase, it was r=0.55(P=0.01)and r=0.5(P=0.021). Conclusions: Bactericidal activity proved satisfactory in only half to two-thirds of patients with IDFUs, an outcome that appears to correlate primarily with arterial flow.


Subject(s)
Anti-Bacterial Agents , Diabetic Foot , Microcirculation , Humans , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Microcirculation/drug effects , Male , Female , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Middle Aged , Aged , Administration, Intravenous
4.
Anim Microbiome ; 6(1): 21, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698458

ABSTRACT

Southern Tamanduas (Tamandua tetradactyla) belong to the specialized placental myrmecophages. There is not much information about their intestinal microbiome. Moreover, due to their food specialization, it is difficult to create an adequate diet under breeding conditions. Therefore, we used 16S rDNA amplicon sequencing to analyze the fecal microbiome of captive Southern Tamanduas from four locations in the Czech Republic and evaluated the impact of the incoming diet and facility conditions on microbiome composition. Together with the microbiome analysis, we also quantified and identified cultivable commensals. The anteater fecal microbiome was dominated by the phyla Bacillota and Bacteroidota, while Pseudomonadota, Spirochaetota, and Actinobacteriota were less abundant. At the taxonomic family level, Lachnospiraceae, Prevotellaceae, Bacteroidaceae, Oscillospiraceae, Erysipelotrichaceae, Spirochaetaceae, Ruminococcaceae, Leuconostocaceae, and Streptococcaceae were mainly represented in the fecal microbiome of animals from all locations. Interestingly, Lactobacillaceae dominated in the location with a zoo-made diet. These animals also had significantly lower diversity of gut microbiome in comparison with animals from other locations fed mainly with a complete commercial diet. Moreover, captive conditions of analyzed anteater included other factors such as the enrichment of the diet with insect-based products, probiotic interventions, the presence of other animals in the exposure, which can potentially affect the composition of the microbiome and cultivable microbes. In total, 63 bacterial species from beneficial commensal to opportunistic pathogen were isolated and identified using MALDI-TOF MS in the set of more than one thousand selected isolates. Half of the detected species were present in the fecal microbiota of most animals, the rest varied across animals and locations.

5.
Appl Microbiol Biotechnol ; 108(1): 145, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240984

ABSTRACT

Cutaneous leishmaniasis, a parasitic disease caused by Leishmania major, is a widely frequent form in humans. To explore the importance of the host gut microbiota and to investigate its changes during L. major infection, two different groups of mouse models were assessed. The microbiome of two parts of the host gut-ileum and colon-from infected and non-infected mice were characterised by sequencing of 16S rDNA using an Ion Torrent PGM platform. Microbiome analysis was performed to reveal changes related to the susceptibility and the genetics of mice strains in two different gut compartments and to compare the results between infected and non-infected mice. The results showed that Leishmania infection affects mainly the ileum microbiota, whereas the colon bacterial community was more stable. Different biomarkers were determined in the gut microbiota of infected resistant mice and infected susceptible mice using LEfSe analysis. Lactobacillaceae was associated with resistance in the colon microbiota of all resistant mice strains infected with L. major. Genes related to xenobiotic biodegradation and metabolism and amino acid metabolism were primarily enriched in the small intestine microbiome of resistant strains, while genes associated with carbohydrate metabolism and glycan biosynthesis and metabolism were most abundant in the gut microbiome of the infected susceptible mice. These results should improve our understanding of host-parasite interaction and provide important insights into the effect of leishmaniasis on the gut microbiota. Also, this study highlights the role of host genetic variation in shaping the diversity and composition of the gut microbiome. KEY POINTS: • Leishmaniasis may affect mainly the ileum microbiota while colon microbiota was more stable. • Biomarkers related with resistance or susceptibility were determined in the gut microbiota of mice. • Several pathways were predicted to be upregulated in the gut microbiota of resistant or susceptible mice.


Subject(s)
Gastrointestinal Microbiome , Leishmania major , Leishmaniasis, Cutaneous , Humans , Animals , Mice , Disease Susceptibility/microbiology , Biomarkers
6.
Folia Microbiol (Praha) ; 69(2): 259-282, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38095802

ABSTRACT

Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Diabetic Nephropathies , Diabetic Retinopathy , Gastrointestinal Microbiome , Humans , Diabetic Nephropathies/etiology , Obesity
7.
Environ Microbiome ; 18(1): 72, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730677

ABSTRACT

Microbiota of sulfur-rich environments has been extensively studied due to the biotechnological potential of sulfur bacteria, or as a model of ancient life. Cold terrestrial sulfur springs are less studied compared to sulfur-oxidizing microbiota of hydrothermal vents, volcanic environments, or soda lakes. Despite that, several studies suggested that sulfur springs harbor diverse microbial communities because of the unique geochemical conditions of upwelling waters. In this study, the microbiota of five terrestrial sulfur springs was examined using a 16 S rRNA gene sequencing. The clear dominance of the Proteobacteria and Campylobacterota phyla of cold sulfur springs microbiota was observed. Contrary to that, the microbiota of the hot sulfur spring was dominated by the Aquificota and Firmicutes phylum respectively. Sulfur-oxidizing genera constituted a dominant part of the microbial populations with the Thiothrix and Sulfurovum genera identified as the core microbiota of cold sulfur terrestrial springs in Slovakia. Additionally, the study emphasizes that sulfur springs in Slovakia support unique, poorly characterized bacterial communities of sulfur-oxidizing bacteria.

8.
Heliyon ; 9(4): e15417, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37123951

ABSTRACT

The present study investigated whether neonatal exposure to the proinflammatory endotoxin lipopolysaccharide (LPS) followed by an antibiotic (ATB)-induced dysbiosis in early adulthood could induce neurodevelopmental disorders-like behavioral changes in adult male rats. Combining these two stressors resulted in decreased weight gain, but no significant behavioral abnormalities were observed. LPS treatment resulted in adult rats' hypoactivity and induced anxiety-like behavior in the social recognition paradigm, but these behavioral changes were not exacerbated by ATB-induced gut dysbiosis. ATB treatment seriously disrupted the gut bacterial community, but dysbiosis did not affect locomotor activity, social recognition, and acoustic reactivity in adult rats. Fecal bacterial community analyses showed no differences between the LPS challenge exposed/unexposed rats, while the effect of ATB administration was decisive regardless of prior LPS exposure. ATB treatment resulted in significantly decreased bacterial diversity, suppression of Clostridiales and Bacteroidales, and increases in Lactobacillales, Enterobacteriales, and Burkholderiales. The persistent effect of LPS on some aspects of behavior suggests a long-term effect of early toxin exposure that was not observed in ATB-treated animals. However, an anti-inflammatory protective effect of ATB cannot be assumed because of the increased abundance of pro-inflammatory, potentially pathogenic bacteria (Proteus, Suttrella) and the elimination of the bacterial families Ruminococcaceae and Lachnospiraceae, which are generally considered beneficial for gut health.

9.
Sci Rep ; 13(1): 7278, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142643

ABSTRACT

Stress increases plasma concentrations of corticosteroids, however, their tissue levels are unclear. Using a repeated social defeat paradigm, we examined the impact of chronic stress on tissue levels of corticosterone (CORT), progesterone (PROG), 11-deoxycorticosterone (11DOC) and 11-dehydrocorticosterone (11DHC) and on gut microbiota, which may reshape the stress response. Male BALB/c mice, liquid chromatography-tandem mass spectrometry and 16S RNA gene sequencing were used to screen steroid levels and fecal microbiome, respectively. Stress induced greater increase of CORT in the brain, liver, and kidney than in the colon and lymphoid organs, whereas 11DHC was the highest in the colon, liver and kidney and much lower in the brain and lymphoid organs. The CORT/11DHC ratio in plasma was similar to the brain but much lower in other organs. Stress also altered tissue levels of PROG and 11DOC and the PROG/11DOC ratio was much higher in lymphoid organs that in plasma and other organs. Stress impacted the ß- but not the α-diversity of the gut microbiota and LEfSe analysis revealed several biomarkers associated with stress treatment. Our data indicate that social defeat stress modulates gut microbiota diversity and induces tissue-dependent changes in local levels of corticosteroids, which often do not reflect their systemic levels.


Subject(s)
Corticosterone , Progesterone , Mice , Animals , Male , Desoxycorticosterone , Steroids , Brain , Chromatography, Liquid
10.
J Fungi (Basel) ; 9(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36836276

ABSTRACT

Invasive pulmonary aspergillosis (IPA) may be a rare cause of granulomatous pneumonia in horses. The mortality of IPA is almost 100%; direct diagnostic tools in horses are needed. Bronchoalveolar lavage fluid (BALF) and serum samples were collected from 18 horses, including individuals suffering from IPA (n = 1), equine asthma (EA, n = 12), and 5 healthy controls. Serum samples were collected from another 6 healthy controls. Samples of BALF (n = 18) were analyzed for Aspergillus spp. DNA, fungal galactomannan (GM), ferricrocin (Fc), triacetylfusarinin C (TafC), and gliotoxin (Gtx). Analysis of 24 serum samples for (1,3)-ß-D-glucan (BDG) and GM was performed. Median serum BDG levels were 131 pg/mL in controls and 1142 pg/mL in IPA. Similar trends were observed in BALF samples for GM (Area under the Curve (AUC) = 0.941) and DNA (AUC = 0.941). The fungal secondary metabolite Gtx was detected in IPA BALF and lung tissue samples (86 ng/mL and 2.17 ng/mg, AUC = 1).

11.
Animals (Basel) ; 12(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36009603

ABSTRACT

The aim of this study was to compare the diversity and composition of fecal bacteria in goats and cows offered the same diet and to evaluate the influence of animal species on the gut microbiome. A total of 17 female goats (Blond Adamellan) and 16 female cows (Brown Swiss) kept on an organic farm were fed pasture and hay. Bacterial structure in feces was examined by high-throughput sequencing using the V4-V5 region of the 16S rRNA gene. The Alpha diversity measurements of the bacterial community showed no statistical differences in species richness and diversity between the two groups of ruminants. However, the Pielou evenness index revealed a significant difference and showed higher species evenness in cows compared to goats. Beta diversity measurements showed statistical dissimilarities and significant clustering of bacterial composition between goats and cows. Firmicutes were the dominant phylum in both goats and cows, followed by Bacteroidetes, Proteobacteria, and Spirochaetes. Linear discriminant analysis with effect size (LEfSe) showed a total of 36 significantly different taxa between goats and cows. Notably, the relative abundance of Ruminococcaceae UCG-005, Christensenellaceae R-7 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-009, Ruminococcaceae UCG-013, Ruminococcaceae UCG-014, Ruminococcus 1, Ruminococcaceae UCG-002, Lachnospiraceae NK4A136 group, Treponema 2, Lachnospiraceae AC2044 group, and Bacillus was higher in goats compared to cows. In contrast, the relative abundance of Turicibacter, Solibacillus, Alloprevotella, Prevotellaceae UCG-001, Negativibacillus, Lachnospiraceae UCG-006, and Eubacterium hallii group was higher in cows compared with goats. Our results suggest that diet shapes the bacterial community in feces, but the host species has a significant impact on community structure, as reflected primarily in the relative abundance of certain taxa.

12.
Viruses ; 14(5)2022 05 18.
Article in English | MEDLINE | ID: mdl-35632827

ABSTRACT

BACKGROUND AND AIMS: Elderly nursing home residents are especially prone to a severe course of SARS-CoV-2 infection. In this study, we aimed to investigate the complex immune response after vaccination depending on the convalescence status and vaccine. METHODS: Sampling took place in September-October 2021. IgG antibodies against spike protein and nucleocapsid protein, the titer of virus neutralization antibodies against delta and (on a subset of patients) omicron, and cellular immunity (interferon-gamma release assay) were tested in nursing home residents vaccinated with Pfizer, Moderna (both 30-31 weeks after the completion of vaccination), or AstraZeneca (23 weeks) vaccines. The prevalence with 95% confidence intervals (CI) was evaluated in Stata version 17. RESULTS: 95.2% (95% CI: 92.5-97.1%) of the 375 participants had positive results of anti-S IgG, 92.8% (95% CI: 89.7-95.2%) were positive in virus neutralization assay against delta, and 89.0% (95% CI: 84.5-92.5%) in the interferon-gamma-releasing assay detecting cellular immunity. Results of the virus neutralization assay against omicron correlated with those against delta but the neutralization capacity was reduced by about half. As expected, the worst results were found for the AstraZeneca vaccine, although the vaccination-to-test period was the shortest for this vaccine. All immune parameters were significantly higher in convalescent residents than in naive residents after vaccination. No case of COVID-19 occurred during the vaccination-to-test period. CONCLUSIONS: A high immune response, especially among vaccinated convalescents (i.e., residents with hybrid immunity), was found in elderly nursing home residents 5-7 months after vaccination against SARS-CoV-2. In view of this, it appears that such residents are much better protected from COVID-19 than those who are only vaccinated and the matter of individual approach to the booster dose in such individuals should be further discussed.


Subject(s)
COVID-19 , Vaccines , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Czech Republic/epidemiology , Humans , Immunity , Immunoglobulin G , Nursing Homes , SARS-CoV-2 , Vaccination
13.
BMC Microbiol ; 22(1): 63, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35216552

ABSTRACT

BACKGROUND: The microbiome alterations are associated with cancer growth and may influence the immune system and response to therapy. Particularly, the gut microbiome has been recently shown to modulate response to melanoma immunotherapy. However, the role of the skin microbiome has not been well explored in the skin tumour microenvironment and the link between the gut microbiome and skin microbiome has not been investigated in melanoma progression. Therefore, the aim of the present study was to examine associations between dysbiosis in the skin and gut microbiome and the melanoma growth using MeLiM porcine model of melanoma progression and spontaneous regression. RESULTS: Parallel analysis of cutaneous microbiota and faecal microbiota of the same individuals was performed in 8 to 12 weeks old MeLiM piglets. The bacterial composition of samples was analysed by high throughput sequencing of the V4-V5 region of the 16S rRNA gene. A significant difference in microbiome diversity and richness between melanoma tissue and healthy skin and between the faecal microbiome of MeLiM piglets and control piglets were observed. Both Principal Coordinate Analysis and Non-metric multidimensional scaling revealed dissimilarities between different bacterial communities. Linear discriminant analysis effect size at the genus level determined different potential biomarkers in multiple bacterial communities. Lactobacillus, Clostridium sensu stricto 1 and Corynebacterium 1 were the most discriminately higher genera in the healthy skin microbiome, while Fusobacterium, Trueperella, Staphylococcus, Streptococcus and Bacteroides were discriminately abundant in melanoma tissue microbiome. Bacteroides, Fusobacterium and Escherichia-Shigella were associated with the faecal microbiota of MeLiM piglets. Potential functional pathways analysis based on the KEGG database indicated significant differences in the predicted profile metabolisms between the healthy skin microbiome and melanoma tissue microbiome. The faecal microbiome of MeLiM piglets was enriched by genes related to membrane transports pathways allowing for the increase of intestinal permeability and alteration of the intestinal mucosal barrier. CONCLUSION: The associations between melanoma progression and dysbiosis in the skin microbiome as well as dysbiosis in the gut microbiome were identified. Results provide promising information for further studies on the local skin and gut microbiome involvement in melanoma progression and may support the development of new therapeutic approaches.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Microbiota , Animals , Bacteria/genetics , Dysbiosis/microbiology , Feces/microbiology , Fusobacterium , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Swine , Tumor Microenvironment
14.
Folia Microbiol (Praha) ; 67(1): 55-61, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34499312

ABSTRACT

Identification of filamentous fungi based on morphological features is the most available approach used in clinical mycology laboratories. However, MALDI-TOF mass spectrometry is currently invaluable for identification of microorganisms because of its rapidity, simplicity, and accuracy. This study aimed to find the optimal way of identifying filamentous fungi using MALDI-TOF MS.The sample comprised 193 isolates of filamentous fungi. The identification started with morphological assessment. Then isolates were identified using MALDI-TOF MS, both directly from culture and following culture in liquid media with extraction. Subsequently, identification of 20 selected isolates was compared by sequencing of the benA gene, ITS1-5,8-ITS2, and D1-D2 LSU regions.Based on morphological criteria, 17 genera of fungi were identified. With MALDI-TOF MS performed directly from culture, nine isolates were identified to the genus level and 184 to the species level, with a total of 75 species being noted. With the MALDI-TOF MS extraction method, 190 isolates were identified to the species level, with 43 species being noted. The rates of agreement between identification using morphology and the MALDI-TOF MS direct method were 58.55% at the genus level and 22.24% at the species level. The rates of agreement between identification using morphology and the MALDI-TOF MS extraction method were 84.97% at the genus level and 46.11% at the species level. Using sequencing, 87.5% agreement was found for identification with the MALDI-TOF MS extraction method, as compared with only 43.75% for the direct method.The results suggest that the optimal approach to identification of filamentous fungi is a combination of morphological features and MALDI-TOF MS using the extraction method.


Subject(s)
Arthrodermataceae , Arthrodermataceae/genetics , Culture Media , Diagnostic Tests, Routine , Fungi/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Diagnostics (Basel) ; 11(9)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34573909

ABSTRACT

Many studies reported good performance of nasopharyngeal swab-based antigen tests for detecting SARS-CoV-2-positive individuals; however, studies independently evaluating the quality of antigen tests utilizing anterior nasal swabs or saliva swabs are still rare, although such tests are widely used for mass testing. In our study, sensitivities, specificities and predictive values of seven antigen tests for detection of SARS-CoV-2 (one using nasopharyngeal swabs, two using anterior nasal swabs and four using saliva) were evaluated. In a setting of a high-capacity testing center, nasopharyngeal swabs for quantitative PCR (qPCR) were taken and, at the same time, antigen testing was performed in accordance with manufacturers' instructions for the respective tests. In samples where qPCR and antigen tests yielded different results, virus culture was performed to evaluate the presence of the viable virus. Sensitivities and specificities of individual tests were calculated using both qPCR and qPCR corrected for viability as the reference. In addition, calculations were also performed for data categorized according to the cycle threshold and symptomatic status. The test using nasopharyngeal swabs yielded the best results (sensitivity of 80.6% relative to PCR and 91.2% when corrected for viability) while none of the remaining tests (anterior nasal swab or saliva-based tests) came even close to the WHO criteria for overall sensitivity. Hence, we advise caution when using antigen tests with alternative sampling methods without independent validation.

16.
J Clin Med ; 10(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206663

ABSTRACT

BACKGROUND AND AIMS: Ulcerative colitis (UC) is a chronic inflammatory disease. Fecal microbial transplantation (FMT) is a promising alternative treatment. METHODS: This multicenter, open-label, noninferiority trial randomized patients with active left-sided UC (Mayo score 4-10) equally to FMT or 5-aminosalicylic acid (5-ASA) enemas. FMT enemas were administered five times in the first week and then once weekly for 5 weeks. 5-ASA enemas were administered daily for 2 weeks and then every other day. The primary study endpoint was clinical remission, with a total Mayo score ≤2 at week 12 with no subscore >1. RESULTS: Sixty-one patients were screened; 45 were enrolled and randomized to FMT (n = 23) or 5-ASA (n = 22). Twenty-one FMT and 22 5-ASA patients completed at least the week 4 study visit and were included in the mITT analysis. Twelve FMT (57%) and eight 5-ASA patients achieved the primary study endpoint. FMT noninferiority with 10% margin was confirmed (95% CI: -7.6%, 48.9%). Adverse events occurred in 12 FMT (57%) and 13 5-ASA (59%) patients. Increased microbial diversity persisted 3 months after FMT. CONCLUSION: FMT is an effective treatment for left-sided UC and increased recipient microbiome diversity. Targeted microbiome modification may improve FMT efficacy. Further investigation is needed to guide donor and patient selection.

17.
Pathogens ; 10(6)2021 05 24.
Article in English | MEDLINE | ID: mdl-34073968

ABSTRACT

We present epidemiological, clinical and laboratory findings of five Czech patients diagnosed with autochthonous mosquito-borne disease-four patients with confirmed West Nile virus (WNV) and one patient with Usutu virus (USUV) infections, from July to October 2018, including one fatal case due to WNV. This is the first documented human outbreak caused by WNV lineage 2 in the Czech Republic and the first record of a neuroinvasive human disease caused by USUV, which illustrates the simultaneous circulation of WNV and USUV in the country.

18.
Infect Dis (Lond) ; 53(9): 661-668, 2021 09.
Article in English | MEDLINE | ID: mdl-33985403

ABSTRACT

BACKGROUND: Antigen testing for SARS-CoV-2 is considered to be less sensitive than the standard reference method - real-time PCR (RT-PCR). It has been suggested that many patients with positive RT-PCR 'missed' by antigen testing might be non-infectious. METHODS: In a real-world high-throughput setting for asymptomatic or mildly symptomatic patients, 494 patients were tested using RT-PCR as well as a single lateral flow antigen test (Ecotest, AssureTech, China). Where the results differed, virus viability was evaluated by cell culture. The test parameters were calculated with RT-PCR and RT-PCR adjusted on viability as reference standards. RESULTS: The overall sensitivity of the used antigen test related to the RT-PCR only was 76.2%, specificity was 97.3%. However, 36 out of 39 patients 'missed' by the antigen test contained no viable virus. After adjusting on that, the sensitivity grew to 97.7% and, more importantly for disease control purposes, the negative predictive value reached 99.2%. CONCLUSIONS: We propose that viability testing should be always performed when evaluating a new antigen test. A well-chosen and validated antigen test provides excellent results in identifying patients who are shedding viable virus (although some caveats still remain) in the real-world high-throughput setting of asymptomatic or mildly symptomatic individuals.


Subject(s)
COVID-19 , Antigens, Viral , China , Humans , SARS-CoV-2 , Sensitivity and Specificity
19.
Viruses ; 13(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33921164

ABSTRACT

Antigen testing for SARS-CoV-2 (AGT) is generally considered inferior to RT-PCR testing in terms of sensitivity. However, little is known about the infectiousness of RT-PCR positive patients who pass undetected by AGT. In a screening setting for mildly symptomatic or asymptomatic patients with high COVID-19 prevalence (30-40%), 1141 patients were tested using one of five AGTs and RT-PCR. Where the results differed, virus viability in the samples was tested on cell culture (CV-1 cells). The test battery included AGTs by JOYSBIO, Assure Tech, SD Biosensor, VivaChek Biotech and NDFOS. Sensitivities of the ATGs compared to RT-PCR ranged from 42% to 76%. The best test yielded a 76% sensitivity, 97% specificity, 92% positive, and 89% negative predictive values, respectively. However, in the best performing ATG tests, almost 90% of samples with "false negative" AGT results contained no viable virus. Corrected on the virus viability, sensitivities grew to 81-97% and, with one exception, the tests yielded high specificities >96%. Performance characteristics of the best test after adjustment were 96% sensitivity, 97% specificity, 92% positive, and 99% negative predictive values (high prevalence population). We, therefore, believe that virus viability should be considered when assessing the AGT performance. Also, our results indicate that a well-performing antigen test could in a high-prevalence setting serve as an excellent tool for identifying patients shedding viable virus. We also propose that the high proportion of RT-PCR-positive samples containing no viable virus in the group of "false negatives" of the antigen test should be further investigated with the aim of possibly preventing needless isolation of such patients.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , COVID-19/immunology , Microbial Viability , SARS-CoV-2/immunology , Serologic Tests/methods , Adult , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , False Negative Reactions , Female , Humans , Male , Mass Screening , Middle Aged , Sensitivity and Specificity
20.
Microorganisms ; 9(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445538

ABSTRACT

This work investigated the changes of the rumen microbiome of goats switched from a forage to a concentrate diet with special attention to anaerobic fungi (AF). Female goats were fed an alfalfa hay (AH) diet (0% grain; n = 4) for 20 days and were then abruptly shifted to a high-grain (HG) diet (40% corn grain, 60% AH; n = 4) and treated for another 10 days. Rumen content samples were collected from the cannulated animals at the end of each diet period (day 20 and 30). The microbiome structure was studied using high-throughput sequencing for bacteria, archaea (16S rRNA gene) and fungi (ITS2), accompanied by qPCR for each group. To further elucidate unclassified AF, clone library analyses were performed on the ITS1 spacer region. Rumen pH was significantly lower in HG diet fed goats, but did not induce subacute ruminal acidosis. HG diet altered prokaryotic communities, with a significant increase of Bacteroidetes and a decrease of Firmicutes. On the genus level Prevotella 1 was significantly boosted. Methanobrevibacter and Methanosphaera were the most abundant archaea regardless of the diet and HG induced a significant augmentation of unclassified Thermoplasmatales. For anaerobic fungi, HG triggered a considerable rise in Feramyces observed with both ITS markers, while a decline of Tahromyces was detected by ITS2 and decrease of Joblinomyces by ITS1 only. The uncultured BlackRhino group revealed by ITS1 and further elucidated in one sample by LSU analysis, formed a considerable part of the AF community of goats fed both diets. Results strongly indicate that the rumen ecosystem still acts as a source for novel microorganisms and unexplored microbial interactions and that initial rumen microbiota of the host animal considerably influences the reaction pattern upon diet change.

SELECTION OF CITATIONS
SEARCH DETAIL
...