Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 7(1): e05889, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437890

ABSTRACT

Farming management practices are of paramount importance for soil organic carbon (SOC) sequestration in carbon (C) cycling at different scales. However, due to a lack of proper methodologies, estimating the impacts of different soil management practices on overall SOC stock remains inadequately quantified. In this paper, a process-based model, Denitrification-Decomposition (DNDC), was validated on midterm (9 years) and employed depending on the local climate, soil and management conditions, to assess the impacts of alternative management practices on SOC stock under two tillage systems, in a semi-arid region of Morocco. Validated results showed a good agreement between model simulated and observed values, based on the normalized root mean square error (RMSE) and Pearson correlation coefficient (r). This agreement indicates that the DNDC model could capture patterns and magnitudes changes across the climate zone, soil type, and management practices. Modeled results pointed out that, under no-tillage practice (NT), the SOC content increased by 30% compared to conventional tillage (CT). During the simulated period (9 years), the SOC sequestration potential (CSP) has been greatly improved with increased crop residue rate and application of farmyard manure (FY-manure). This increase ranged from 415 kg C/ha to 1787 kg C/ha under NT practice, and from 150 kg C/ha to 818 kg C/ha under CT system. In contrast, increasing fertilizer rate had low to negligible effect on SOC stock. On the other hand, CSP declined by 107-335 kg C/ha and by 177-354 kg C/ha under NT and CT practices respectively, when decreasing N-fertilizer rates. In light of these results, an increase in crop residue rate returned at surface after harvest and application of organic fertilizer, especially under NT practice, can substantially improve SOC stock in a semi-arid region.

2.
Heliyon ; 6(10): e05094, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33083599

ABSTRACT

For many years, the application of mixed-effects modeling has received much attention for predicting scenarios in the fields of theoretical and applied sciences. In this study, a "new" Multilevel Linear Mixed-Effects (LME) model is proposed to analyze and predict multiply-nested and hierarchical data. Temperature and rainfall observation were carried out successively between 1979-2014 and 1984-2018; and the data input was organized on monthly basis for each year. Besides, a daily observation was made for "Dar Chaoui" zone of Northern Morocco. However, we chose in the first time a simple linear regression model, but the estimation has been just for fixed effects and ignoring the random effect. On the other hand, in multilevel linear mixed effects models, once the model has been formulated, methods are needed to estimate the model parameters. In this section, we first deal with the joint estimation of the fixed effects (ß), random effects (ui) and then with estimation of the variance parameters (γ, ρ and σ2). The study revealed that the predicted values are very close to the real value. Besides, this model is capable of modelling the error, fixed and random parts of the sample. Moreover, in this range, the results showed that there is three standard deviations measures for fixed and random effects, also the variance measure, which demonstrate us a great prediction. In conclusion, this model gives a decisive precision of results that can be exploited in studies for forecast of water balance and/or soil erosion. These results can also be used to inhibit the risk of erosion with possible arrangements for the environment and human security.

3.
F1000Res ; 7: 1310, 2018.
Article in English | MEDLINE | ID: mdl-32509273

ABSTRACT

Background: The Argane tree ( Argania spinosa L. Skeels) is an endemic tree of southwestern Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds. Unfortunately, the argane tree ecosystem is facing significant threats from environmental changes (global warming, over-population) and over-exploitation. Limited research has been conducted, however, on argane tree genetics and genomics, which hinders its conservation and genetic improvement. Methods: Here, we present a draft genome assembly of A. spinosa. A reliable reference genome of  A. spinosa was created using a hybrid  de novo assembly approach combining short and long sequencing reads. Results: In total, 144 Gb Illumina HiSeq reads and 7.2 Gb PacBio reads were produced and assembled. The final draft genome comprises 75 327 scaffolds totaling 671 Mb with an N50 of 49 916 kb. The draft assembly is close to the genome size estimated by k-mers distribution and covers 89% of complete and 4.3 % of partial Arabidopsis orthologous groups in BUSCO. Conclusion: The A. spinosa genome will be useful for assessing biodiversity leading to efficient conservation of this endangered endemic tree. Furthermore, the genome may enable genome-assisted cultivar breeding, and provide a better understanding of important metabolic pathways and their underlying genes for both cosmetic and pharmacological purposes.

4.
C R Biol ; 340(4): 226-237, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28302364

ABSTRACT

The plants belonging to the Ericaceae family are morphologically diverse and widely distributed groups of plants. They are typically found in soil with naturally poor nutrient status. The objective of the current study was to identify cultivable mycobionts from roots of nine species of Ericaceae (Calluna vulgaris, Erica arborea, Erica australis, Erica umbellate, Erica scoparia, Erica multiflora, Arbutus unedo, Vaccinium myrtillus, and Vaccinium corymbosum). The sequencing approach was used to amplify the Internal Transcribed Spacer (ITS) region. Results from the phylogenetic analysis of ITS sequences stored in the Genbank confirmed that most of strains (78) were ascomycetes, 16 of these were closely related to Phialocephala spp, 12 were closely related to Helotiales spp and 6 belonged to various unidentified ericoid mycorrhizal fungal endophytes. Although the isolation frequencies differ sharply according to regions and ericaceous species, Helotiales was the most frequently encountered order from the diverse assemblage of associated fungi (46.15%), especially associated with C. vulgaris (19.23%) and V. myrtillus (6.41%), mostly present in the Loge (L) and Mellousa region (M). Moreover, multiple correspondence analysis (MCA) showed three distinct groups connecting fungal order to ericaceous species in different regions.


Subject(s)
Ascomycota/classification , Ascomycota/isolation & purification , Ericaceae/microbiology , Ascomycota/genetics , Ecosystem , Morocco , Plant Roots/microbiology
5.
J Environ Qual ; 32(4): 1262-8, 2003.
Article in English | MEDLINE | ID: mdl-12931881

ABSTRACT

Phosphogypsum (PG) is a residue of the phosphate fertilizer industry that has relatively high concentrations of 226Ra and other radionuclides. Thus, it is interesting to study the effect of PG applied as a Ca amendment on the levels and behavior of radionuclides in agricultural soils. A study involving treatments with 13 and 26 Mg ha(-1) of PG and 30 Mg ha(-1) of manure was performed, measuring 226Ra and U isotopes in drainage water, soil, and plant samples. The PG used in the treatment had 510 +/- 40 Bq kg(-1) of 226Ra. The 226Ra concentrations in drainage waters from PG-amended plots were similar (between 2.6 and 7.2 mBq L(-1)) to that reported for noncontaminated waters. Although no significant effect due to PG was observed, the U concentrations in drainage waters (200 mBq L(-1) for 238U) were one order of magnitude higher than those described in noncontaminated waters. This high content in U can be ascribed to desorption processes mainly related to the natural adsorbed pool in soil (25 Bq kg(-1) of 238U). This is supported by the 234U to 238U isotopic ratio of 1.16 in drainage waters versus secular equilibrium in PG and P fertilizers. The progressive enrichment in 226Ra concentration in soils due to PG treatment cannot be concluded from our present data. This PG treatment does not determine any significant difference in 226Ra concentration in drainage waters or in plant material [cotton (Gossipium hirsutum L.) leaves]. No significant levels of radionuclides except 40K were found in the vegetal tissues.


Subject(s)
Calcium Sulfate/chemistry , Phosphorus/chemistry , Radioisotopes/analysis , Radium/analysis , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis , Agriculture , Calcium Sulfate/analysis , Ecosystem , Environmental Monitoring , Fertilizers , Phosphorus/analysis , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...