Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1241448, 2023.
Article in English | MEDLINE | ID: mdl-37638055

ABSTRACT

Introduction: Although both COVID-19 and non-COVID-19 ARDS can be accompanied by significantly increased levels of circulating cytokines, the former significantly differs from the latter by its higher vasculopathy, characterized by increased oxidative stress and coagulopathy in lung capillaries. This points towards the existence of SARS-CoV2-specific factors and mechanisms that can sensitize the endothelium towards becoming dysfunctional. Although the virus is rarely detected within endothelial cells or in the circulation, the S1 subunit of its spike protein, which contains the receptor binding domain (RBD) for human ACE2 (hACE2), can be detected in plasma from COVID-19 patients and its levels correlate with disease severity. It remains obscure how the SARS-CoV2 RBD exerts its deleterious actions in lung endothelium and whether there are mechanisms to mitigate this. Methods: In this study, we use a combination of in vitro studies in RBD-treated human lung microvascular endothelial cells (HL-MVEC), including electrophysiology, barrier function, oxidative stress and human ACE2 (hACE2) surface protein expression measurements with in vivo studies in transgenic mice globally expressing human ACE2 and injected with RBD. Results: We show that SARS-CoV2 RBD impairs endothelial ENaC activity, reduces surface hACE2 expression and increases reactive oxygen species (ROS) and tissue factor (TF) generation in monolayers of HL-MVEC, as such promoting barrier dysfunction and coagulopathy. The TNF-derived TIP peptide (a.k.a. solnatide, AP301) -which directly activates ENaC upon binding to its a subunit- can override RBD-induced impairment of ENaC function and hACE2 expression, mitigates ROS and TF generation and restores barrier function in HL-MVEC monolayers. In correlation with the increased mortality observed in COVID-19 patients co-infected with S. pneumoniae, compared to subjects solely infected with SARS-CoV2, we observe that prior intraperitoneal RBD treatment in transgenic mice globally expressing hACE2 significantly increases fibrin deposition and capillary leak upon intratracheal instillation of S. pneumoniae and that this is mitigated by TIP peptide treatment.


Subject(s)
COVID-19 , Endothelial Cells , Animals , Mice , Humans , Angiotensin-Converting Enzyme 2/genetics , RNA, Viral , Reactive Oxygen Species , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Endothelium
2.
PLoS One ; 9(10): e108639, 2014.
Article in English | MEDLINE | ID: mdl-25286309

ABSTRACT

The Gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a severe food-borne infection characterised by abortion, septicaemia, or meningoencephalitis. L. monocytogenes causes outbreaks of febrile gastroenteritis and accounts for community-acquired bacterial meningitis in humans. Listeriosis has one of the highest mortality rates (up to 30%) of all food-borne infections. This human pathogenic bacterium is an important model organism for biomedical research to investigate cell-mediated immunity. L. monocytogenes is also one of the best characterised bacterial systems for the molecular analysis of intracellular parasitism. Recently several transcriptomic studies have also made the ubiquitous distributed bacterium as a model to understand mechanisms of gene regulation from the environment to the infected host on the level of mRNA and non-coding RNAs (ncRNAs). We have used semiconductor sequencing technology for RNA-seq to investigate the repertoire of listerial ncRNAs under extra- and intracellular growth conditions. Furthermore, we applied a new bioinformatic analysis pipeline for detection, comparative genomics and structural conservation to identify ncRNAs. With this work, in total, 741 ncRNA locations of potential ncRNA candidates are now known for L. monocytogenes, of which 611 ncRNA candidates were identified by RNA-seq. 441 transcribed ncRNAs have never been described before. Among these, we identified novel long non-coding antisense RNAs with a length of up to 5,400 nt e.g. opposite to genes coding for internalins, methylases or a high-affinity potassium uptake system, namely the kdpABC operon, which were confirmed by qRT-PCR analysis. RNA-seq, comparative genomics and structural conservation of L. monocytogenes ncRNAs illustrate that this human pathogen uses a large number and repertoire of ncRNA including novel long antisense RNAs, which could be important for intracellular survival within the infected eukaryotic host.


Subject(s)
Listeria monocytogenes/genetics , RNA, Antisense/genetics , Semiconductors , Sequence Analysis, RNA/methods , Transcriptome/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , DNA (Cytosine-5-)-Methyltransferases/metabolism , Gene Expression Regulation, Bacterial , Genetic Association Studies , Humans , Mice , Operon/genetics , RNA, Untranslated/genetics , Reproducibility of Results , Transcription, Genetic
3.
Nucleic Acids Res ; 39(10): 4235-48, 2011 May.
Article in English | MEDLINE | ID: mdl-21278422

ABSTRACT

Small non-coding RNAs (sRNAs) are widespread effectors of post-transcriptional gene regulation in bacteria. Currently extensive information exists on the sRNAs of Listeria monocytogenes expressed during growth in extracellular environments. We used deep sequencing of cDNAs obtained from fractioned RNA (<500 nt) isolated from extracellularly growing bacteria and from L. monocytogenes infected macrophages to catalog the sRNA repertoire during intracellular bacterial growth. Here, we report on the discovery of 150 putative regulatory RNAs of which 71 have not been previously described. A total of 29 regulatory RNAs, including small non-coding antisense RNAs, are specifically expressed intracellularly. We validated highly expressed sRNAs by northern blotting and demonstrated by the construction and characterization of isogenic mutants of rli31, rli33-1 and rli50* for intracellular expressed sRNA candidates, that their expression is required for efficient growth of bacteria in macrophages. All three mutants were attenuated when assessed for growth in mouse and insect models of infection. Comparative genomic analysis revealed the presence of lineage specific sRNA candidates and the absence of sRNA loci in genomes of naturally occurring infection-attenuated bacteria, with additional loss in non-pathogenic listerial genomes. Our analyses reveal extensive sRNA expression as an important feature of bacterial regulation during intracellular growth.


Subject(s)
Listeria monocytogenes/genetics , Macrophages/microbiology , RNA, Bacterial/metabolism , RNA, Small Untranslated/metabolism , Animals , Cell Line , Female , Gene Expression Profiling , Listeria/genetics , Listeria monocytogenes/growth & development , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Mice , Mice, Inbred BALB C , Mutation , RNA, Antisense/metabolism , Regulatory Sequences, Ribonucleic Acid , Riboswitch , Sequence Analysis, RNA
4.
Infect Immun ; 78(7): 3306-14, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20439472

ABSTRACT

The acquisition of iron during the infection process is essential for the growth of pathogenic microorganisms (S. C. Andrews, Adv. Microb. Physiol. 40:281-351, 1998; H. M. Baker, B. F. Anderson, and E. N. Baker, Proc. Natl. Acad. Sci. U. S. A. 100:3579-3583, 2003). Since the solubility of iron is low and it is toxic at low concentrations, following uptake, iron is stored in subcellular microenvironments in the iron storage protein ferritin (C. Cheers and M. Ho, J. Reticuloendothel. Soc. 34:299-309, 1983). Here, we show that ferritin-like proteins (Frl) are highly conserved in the genus Listeria and demonstrate that these proteins are present in both the cytoplasm and cell wall fractions of these bacteria. Even though Frl is expressed under different growth conditions, transcriptional mapping revealed that its regulation is complex. When bacteria are grown in brain heart infusion medium, extracellular expression involves both sigma A (SigA)- and sigma B (SigB)-dependent promoters; however, during intracellular growth, initiation of transcription is additionally SigB dependent. The expression of Frl is greatly enhanced in bacteria grown in the presence of blood, and a mutant strain lacking the frl gene was defective for growth in this medium. Using the monoclonal antibody (MAb) specific for Frl, we demonstrate that administration of anti-Frl MAb prior to infection confers antilisterial resistance in vivo, evidenced in reduced bacterial load and increased survival rates, thereby demonstrating the in vivo significance of upregulated cell surface-associated Frl expression. In vitro studies revealed that the antilisterial resistance is due to increased listerial phagocytosis.


Subject(s)
Antibodies, Bacterial/immunology , Bacterial Proteins/immunology , Ferritins/immunology , Listeriosis/immunology , Animals , Antibodies, Monoclonal/immunology , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Conserved Sequence , Female , Flow Cytometry , Gene Expression/genetics , Listeria monocytogenes/genetics , Listeria monocytogenes/immunology , Macrophages/immunology , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Phagocytosis/immunology , Polymerase Chain Reaction , RNA, Bacterial/genetics , Sigma Factor/genetics
5.
J Bacteriol ; 192(5): 1473-4, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20061480

ABSTRACT

We report the complete and annotated genome sequence of the nonpathogenic Listeria seeligeri SLCC3954 serovar 1/2b type strain harboring the smallest completely sequenced genome of the genus Listeria.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Listeria/genetics , Molecular Sequence Data , Sequence Analysis, DNA
6.
Microb Biotechnol ; 3(6): 658-76, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21255362

ABSTRACT

In the recent years, the number of drug- and multi-drug-resistant microbial strains has increased rapidly. Therefore, the need to identify innovative approaches for development of novel anti-infectives and new therapeutic targets is of high priority in global health care. The detection of small RNAs (sRNAs) in bacteria has attracted considerable attention as an emerging class of new gene expression regulators. Several experimental technologies to predict sRNA have been established for the Gram-negative model organism Escherichia coli. In many respects, sRNA screens in this model system have set a blueprint for the global and functional identification of sRNAs for Gram-positive microbes, but the functional role of sRNAs in colonization and pathogenicity for Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Clostridium difficile is almost completely unknown. Here, we report the current knowledge about the sRNAs of these socioeconomically relevant Gram-positive pathogens, overview the state-of-the-art high-throughput sRNA screening methods and summarize bioinformatics approaches for genome-wide sRNA identification and target prediction. Finally, we discuss the use of modified peptide nucleic acids (PNAs) as a novel tool to inactivate potential sRNA and their applications in rapid and specific detection of pathogenic bacteria.


Subject(s)
Gene Expression Regulation, Bacterial , Gram-Positive Bacteria/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriological Techniques/methods , Biological Products/genetics , Biological Products/pharmacology , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/physiology , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/microbiology , Humans , RNA, Antisense/genetics , RNA, Antisense/pharmacology
7.
J Bacteriol ; 189(10): 3784-92, 2007 May.
Article in English | MEDLINE | ID: mdl-17351037

ABSTRACT

Genome-wide transcriptome profiling was used to reveal hydrogen peroxide (H(2)O(2))-dependent regulatory mechanisms in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. In this study we focused on the role of the OxyR protein, a known regulator of the H(2)O(2) response in bacteria. The transcriptome profiles of R. sphaeroides wild-type and oxyR mutant strains that were exposed to 1 mM H(2)O(2) for 7 min or were not exposed to H(2)O(2) were analyzed. Three classes of OxyR-dependent genes were identified based on their expression patterns in the wild type of oxyR mutant strains with differing predicted roles of oxidized and reduced OxyR as activators of transcription. DNA binding studies revealed that OxyR binds upstream of class I genes, which are induced by H(2)O(2) and exhibit similar basal levels of expression in the wild-type and oxyR mutant strains. The effect of OxyR on class II genes, which are also induced by H(2)O(2) but exhibit significantly lower basal levels of expression in the wild-type strain than in the mutant, is indirect. Interestingly, reduced OxyR also activates expression of few genes (class III). The role of reduced OxyR as an activator is shown for the first time. Our data reveal that the OxyR-mediated response is fast and transient. In addition, we found that additional regulatory pathways are involved in the H(2)O(2) response.


Subject(s)
Gene Expression Regulation, Bacterial/drug effects , Hydrogen Peroxide/pharmacology , Oxidants/pharmacology , Rhodobacter sphaeroides/genetics , Transcription Factors/genetics , Base Sequence , Consensus Sequence , Gene Expression Regulation, Bacterial/physiology , Molecular Sequence Data , Mutation , Regulon/drug effects , Regulon/physiology , Rhodobacter sphaeroides/drug effects , Rhodobacter sphaeroides/metabolism , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Transcription, Genetic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...