Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8214, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081821

ABSTRACT

Metastability of many-body quantum states is rare and still poorly understood. An exceptional example is the low-temperature metallic state of the layered dichalcogenide 1T-TaS2 in which electronic order is frozen after external excitation. Here we visualize the microscopic dynamics of injected charges in the metastable state using a multiple-tip scanning tunnelling microscope. We observe non-thermal formation of a metastable network of dislocations interconnected by domain walls, that leads to macroscopic robustness of the state to external thermal perturbations, such as small applied currents. With higher currents, we observe annihilation of dislocations following topological rules, accompanied with a change of macroscopic electrical resistance. Modelling carrier injection into a Wigner crystal reveals the origin of formation of fractionalized, topologically entangled networks, which defines the spatial fabric through which single particle excitations propagate. The possibility of manipulating topological entanglement of such networks suggests the way forward in the search for elusive metastable states in quantum many body systems.

2.
Nano Lett ; 22(12): 4814-4821, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35688423

ABSTRACT

Current trends in data processing have given impetus for an intense search of new concepts of memory devices with emphasis on efficiency, speed, and scalability. A promising new approach to memory storage is based on resistance switching between charge-ordered domain states in the layered dichalcogenide 1T-TaS2. Here we investigate the energy efficiency scaling of such charge configuration memory (CCM) devices as a function of device size and data write time τW as well as other parameters that have bearing on efficient device operation. We find that switching energy efficiency scales approximately linearly with both quantities over multiple decades, departing from linearity only when τW approaches the ∼0.5 ps intrinsic switching limit. Compared to current state of the art memory devices, CCM devices are found to be much faster and significantly more energy efficient, demonstrated here with two-terminal switching using 2.2 fJ, 16 ps electrical pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...